【24h】

Visual servoing system based on ANFIS(Adaptive Neuro Fuzzy Inference System)

机译:基于ANFIS的视觉伺服系统(自适应神经模糊推理系统)

获取原文
获取原文并翻译 | 示例

摘要

Research in this visual servoing field in the past few decades has produced remarkable results, leading to many exciting expectations as well as new challenges. However, because of the complicated calculation of the inverse Jacobian, it is difficult to implement in real time. Therefore, instead of using the inverse Jacobian, this paper employs the ANFIS(Adaptive Neuro Fuzzy Inference System) approach for visual servo control of a robot manipulator. It is based on visual feedback and no prior information about the kinematics of robot and the camera calibration are unnecessary. Firstly, to efficiently control a manipulator, 3D space is divided into two 2D spaces. And then, we acquire training data from each 2D space and ANFIS is learned by the training data. We categorize the robot movement into two kinds of actions. That is, TOWARD action is performed, in the xy plane, by joint 1 and APPROACH action is performed, in the plane orthogonal to the xy plane, by joint 2 and joint 3. The time varying object can be tracked by controlling both actions in each plane and the simulation results show the validation of our approach.
机译:在过去的几十年中,在视觉伺服领域的研究取得了令人瞩目的成果,从而带来了许多令人兴奋的期望以及新的挑战。然而,由于逆雅可比行列式的计算复杂,因此难以实时实现。因此,本文采用ANFIS(自适应神经模糊推理系统)方法来代替机器人的视觉伺服控制,而不是使用反雅可比矩阵。它基于视觉反馈,不需要有关机器人运动学和相机校准的任何先验信息。首先,为了有效地控制机械手,将3D空间分为两个2D空间。然后,我们从每个2D空间获取训练数据,并且通过训练数据学习ANFIS。我们将机器人运动分为两种动作。即,通过关节1在xy平面中执行TOWARD动作,通过关节2和关节3在与xy平面正交的平面中执行APPROACH动作。通过控制两个动作中的两个,可以跟踪时变对象。每架飞机的仿真结果表明了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号