首页> 外文会议>Computational learning theory >Linear algebraic proofs of VC-dimension based inequalities
【24h】

Linear algebraic proofs of VC-dimension based inequalities

机译:基于VC维不等式的线性代数证明

获取原文
获取原文并翻译 | 示例

摘要

We apply linear algebra (polynomial) techniques to various VC-Dimension based inequalities. We expore connections between the sample compression and this technique for so called maximum classes and prove that maximum classes are connected subgraphs of a Boolean cube. We provide a fast (linear in the cardinality of the class for the fixed VC- dimension) interpolational algorithm for maximum classes. A new method to bound a pseudo-dimension for a class of cell-wise constant functions is proposed.
机译:我们将线性代数(多项式)技术应用于各种基于VC维的不等式。我们研究了所谓的最大类的样本压缩与该技术之间的联系,并证明了最大类是布尔立方体的连接子图。对于最大类别,我们提供了一种快速(固定基数维的类别基数线性)插值算法。提出了一种新的约束一维细胞方向常数函数的伪维数的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号