首页> 外文会议>Computational imaging IX >Classification-Aware Dimensionality Reduction Methods for Explosives Detection using Multi-Energy X-ray Computed Tomography
【24h】

Classification-Aware Dimensionality Reduction Methods for Explosives Detection using Multi-Energy X-ray Computed Tomography

机译:使用多能量X射线计算机断层扫描技术检测爆炸物的分类感知降维方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-Energy X-ray Computed Tomography (MECT) is a non-destructive scanning technology in which multiple energy-selective measurements of the X-ray attenuation can be obtained. This provides more information about the chemical composition of the scanned materials than single-energy technologies and potential for more reliable detection of explosives. We study the problem of discriminating between explosives and non-explosives using low-dimensional features extracted from the high-dimensional attenuation versus energy curves of materials. We study various linear dimensionality reduction methods and demonstrate that the detection performance can be improved by using more than two features and when using features different than the standard photoelectric and Compton coefficients. This suggests the potential for improved detection performance relative to conventional dual-energy X-ray systems.
机译:多能X射线计算机断层扫描(MECT)是一种无损扫描技术,其中可以对X射线衰减进行多次能量选择性测量。与单能技术相比,这提供了有关扫描材料化学成分的更多信息,并提供了更可靠地检测爆炸物的潜力。我们研究了使用从材料的高维衰减与能量曲线中提取的低维特征来区分爆炸物和非爆炸物的问题。我们研究了各种线性降维方法,并证明了使用两个以上的特征以及使用与标准光电系数和康普顿系数不同的特征可以提高检测性能。这表明相对于传统的双能X射线系统,有可能提高检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号