【24h】

Parallelized Kernel Patch Clustering

机译:并行内核补丁聚类

获取原文
获取原文并翻译 | 示例

摘要

Kernel based clustering methods allow to unsupervised partition samples in feature space but have a quadratic computation time O(n2) where n are the number of samples. Therefore these methods are generally ineligible for large datasets. In this paper we propose a meta-algorithm that performs parallelized clusterings of subsets of the samples and merges them repeatedly. The algorithm is able to use many Kernel based clustering methods where we mainly emphasize on Kernel Fuzzy C-Means and Relational Neural Gas. We show that the computation time of this algorithm is basicly linear, i.e. O(n). Further we statistically evaluate the performance of this meta-algorithm on a real-life dataset, namely the Enron Emails.
机译:基于内核的聚类方法允许在特征空间中进行无监督的分区样本,但具有二次计算时间O(n2),其中n是样本数。因此,这些方法通常不适用于大型数据集。在本文中,我们提出了一种元算法,该算法对样本子集执行并行聚类,然后将其重复合并。该算法能够使用许多基于内核的聚类方法,其中我们主要强调内核模糊C均值和关系神经气体。我们证明了该算法的计算时间基本上是线性的,即O(n)。此外,我们在实际数据集(即Enron电子邮件)上统计评估此元算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号