首页> 外文学位 >Hole patching in unstructured mesh and parallelization using graphics processing units.
【24h】

Hole patching in unstructured mesh and parallelization using graphics processing units.

机译:非结构化网格中的孔修补和使用图形处理单元的并行化。

获取原文
获取原文并翻译 | 示例

摘要

Engineering analysis of a three-dimensional geometric model using mesh-based computational technologies requires the model to be topologically watertight. However, achieving watertight geometry is considered to be a challenging task in the field of computational engineering due to the potential presence of geometric deficiencies, such as gaps and holes on the surfaces. This dissertation aims to repair the defective geometric model with the presence of holes irrespective of their complexities. Presented in this dissertation are novel research and implementation of a hybrid surface and volume-based technique for geometry repair. It utilizes a NURBS-based surface-patching algorithm for topologically simple holes and incorporates a volumetric hole-patching algorithm for complex holes. The volume-based hole-patching algorithm solves the diffusion equation using an explicit forward difference scheme in time and a centered difference scheme in space. A robust and efficient algorithm has been developed to both identify and extract a localized hole region. An automated mesh generation process has been implemented to construct individual "column grids" for each isolated hole region. The diffusion equation is solved using finite-difference techniques to generate a scalar solution field from which isosurfaces are extracted with an isovalue that represents the repaired surfaces for the local regions. Finally, a Poisson surface reconstruction is used to create a reconstructed watertight surface.;The graphics processing unit (GPU) has emerged as the most powerful chip in a computer in the last decade but has only in the past few years received extensive attention from the research community for its use in high performance computing. This research explores a GPU-based implementation of a diffusion equation solution to better harness its computation potential and to facilitate the computational needs of geometry repair. Comparisons of the speedup gains for diffusion solutions using GPGPU with that of conventional single and multi-threaded implementations are presented, and their performance characteristics are discussed in this dissertation.
机译:使用基于网格的计算技术对三维几何模型进行工程分析需要模型在拓扑上是水密的。但是,由于可能存在几何缺陷(例如表面上的间隙和孔),因此在计算工程领域中实现水密几何形状被认为是一项艰巨的任务。本文旨在修复存在缺陷的几何模型,而不论其复杂性如何。本文提出了一种基于曲面和体积的混合几何修复技术的新研究和实现。它利用基于NURBS的表面修补算法处理拓扑简单的孔,并结合了体积孔修补算法来处理复杂的孔。基于体积的空穴修补算法使用时间上的显式正向差分方案和空间上的中心差分方案来求解扩散方程。已经开发了一种鲁棒且有效的算法来识别和提取局部孔区域。已经实现了自动网格生成过程,以为每个隔离的孔区域构造单独的“列网格”。使用有限差分技术求解扩散方程,以生成标量解场​​,从中提取具有等值的等值面,该等值表示局部区域的修复面。最后,使用Poisson表面重建来创建重建的水密表面。图形处理单元(GPU)在过去十年中已成为计算机中功能最强大的芯片,但仅在过去几年中,它受到了广泛的关注。研究机构将其用于高性能计算。这项研究探索了基于GPU的扩散方程解决方案的实现方式,以更好地利用其计算潜力并满足几何修复的计算需求。提出了使用GPGPU的扩散解决方案与传统的单线程和多线程实现方案的加速增益的比较,并讨论了它们的性能特征。

著录项

  • 作者

    Kumar, Amitesh.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Engineering Computer.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号