首页> 外文期刊>Parallel Computing >A flexible Patch-based lattice Boltzmann parallelization approach for heterogeneous GPU-CPU clusters
【24h】

A flexible Patch-based lattice Boltzmann parallelization approach for heterogeneous GPU-CPU clusters

机译:异构GPU-CPU集群的基于Patch的灵活格子Boltzmann并行化方法

获取原文
获取原文并翻译 | 示例

摘要

Sustaining a large fraction of single GPU performance in parallel computations is considered to be the major problem of GPU-based clusters. We address this issue in the context of a lattice Boltzmann flow solver that is integrated in the WaLBerla software framework. Our multi-GPU implementation uses a block-structured MPI parallelization and is suitable for load balancing and heterogeneous computations on CPUs and GPUs. The overhead required for multi-GPU simulations is discussed in detail. It is demonstrated that a large fraction of the kernel performance can be sustained for weak scaling on InfiniBand clusters, leading to excellent parallel efficiency. However, in strong scaling scenarios using multiple GPUs is much less efficient than running CPU-only simulations on IBM BG/P and x86-based clusters. Hence, a cost analysis must determine the best course of action for a particular simulation task and hardware configuration. Finally we present weak scaling results of heterogeneous simulations conducted on CPUs and GPUs simultaneously, using clusters equipped with varying node configurations.
机译:在并行计算中维持很大一部分单个GPU性能被认为是基于GPU的群集的主要问题。我们在集成在WaLBerla软件框架中的格子Boltzmann流量求解器的上下文中解决此问题。我们的多GPU实施使用块结构MPI并行化,并且适用于CPU和GPU上的负载平衡和异构计算。详细讨论了多GPU仿真所需的开销。结果表明,在InfiniBand群集上进行弱扩展时,可以维持很大一部分内核性能,从而实现出色的并行效率。但是,在强扩展方案中,使用多个GPU的效率要比在IBM BG / P和基于x86的集群上运行纯CPU仿真要低得多。因此,成本分析必须确定特定模拟任务和硬件配置的最佳操作方案。最后,我们展示了使用配备有不同节点配置的集群同时在CPU和GPU上进行的异构仿真的微弱缩放结果。

著录项

  • 来源
    《Parallel Computing》 |2011年第9期|p.536-549|共14页
  • 作者单位

    Chair for System Simulation, University of Erlangen-Nuremberg, Germany;

    Erlangen Regional Computing Center, University of Erlangen-Nuremberg, Germany;

    Chair for System Simulation, University of Erlangen-Nuremberg, Germany;

    Erlangen Regional Computing Center, University of Erlangen-Nuremberg, Germany;

    Chair for System Simulation, University of Erlangen-Nuremberg, Germany;

    Erlangen Regional Computing Center, University of Erlangen-Nuremberg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lattice; Boltzmann method; MPI; CUDA; Heterogeneous computations;

    机译:格子;玻尔兹曼法MPI;CUDA;异构计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号