首页> 外文会议>Artificial intelligence and computational intelligence >Optimization of Real-Valued Self Set for Anomaly Detection Using Gaussian Distribution
【24h】

Optimization of Real-Valued Self Set for Anomaly Detection Using Gaussian Distribution

机译:基于高斯分布的实值自集异常检测优化

获取原文
获取原文并翻译 | 示例

摘要

The real-valued negative selection algorithm (RNS) has been a key algorithm of anomaly detection. However, the self set which is used to train detectors has some problems, such as the wrong samples, boundary invasion and the overlapping among the self samples. Due to the fact that the probability of most real-valued self vectors is near to Gaussian distribution, this paper proposes a new method which uses Gaussian distribution theory to optimize the self set before training stage. The method was tested by 2-dimensional synthetic data and real network data. Experimental results show that, the new method effectively solves the problems mentioned before.
机译:实值否定选择算法(RNS)已成为异常检测的关键算法。然而,用于训练检测器的自集存在一些问题,例如错误的样本,边界入侵以及自样本之间的重叠。由于大多数实值自矢量的概率接近高斯分布,因此提出了一种新的方法,该方法利用高斯分布理论对训练前的自集进行优化。通过二维合成数据和真实网络数据对该方法进行了测试。实验结果表明,该新方法有效地解决了上述问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号