首页> 外文会议>Algorithmic foundations of robotics IX >Algorithms and Analytic Solutions Using Sparse Residual Dipolar Couplings for High-Resolution Automated Protein Backbone Structure Determination by NMR
【24h】

Algorithms and Analytic Solutions Using Sparse Residual Dipolar Couplings for High-Resolution Automated Protein Backbone Structure Determination by NMR

机译:使用稀疏残留偶极联轴器的高分辨率自动核磁共振蛋白质骨架结构测定算法和解析解

获取原文
获取原文并翻译 | 示例

摘要

Developing robust and automated protein structure determination algorithms using nuclear magnetic resonance (NMR) data is an important goal in computational structural biology. Algorithms based on global orientational restraints from residual dipolar couplings (RDCs) promise to be quicker and more accurate than approaches that use only distance restraints. Recent development of analytic expressions for the roots of RDC equations together with protein kinematics has enabled exact, linear-time algorithms, highly desirable over earlier stochastic methods. In addition to providing guarantees on the number and quality of solutions, exact algorithms require a minimal amount of NMR data, thereby reducing the number of NMR experiments. Implementations of these methods determine the solution structures by explicitly computing the intersections of algebraic curves representing discrete RDC values. However, if additional RDC data can be measured, the algebraic curves no longer generically intersect. We address this situation in the paper and show that globally optimal structures can still be computed analytically as points closest to all of the algebraic curves representing the RDCs. We present new algorithms that expand the types and number of RDCs from which analytic solutions are computed. We evaluate the performance of our algorithms on NMR data for four proteins: human ubiquitin, DNA-damage-inducible protein I (DinI), the Z domain of staphylococcal protein A (SpA), and the third IgG-binding domain of Protein G (GB3). The results show that our algorithms are able to determine high-resolution backbone structures from a limited amount of NMR data.
机译:使用核磁共振(NMR)数据开发强大而自动化的蛋白质结构确定算法是计算结构生物学的重要目标。与仅使用距离约束的方法相比,基于来自残余偶极耦合(RDC)的全局方向约束的算法有望更快,更准确。 RDC方程根的解析表达式与蛋白质运动学的最新发展使精确的线性时间算法成为可能,这是较早的随机方法所迫切需要的。除了为解决方案的数量和质量提供保证外,精确的算法还需要最少的NMR数据量,从而减少了NMR实验的次数。这些方法的实现通过显式计算代表离散RDC值的代数曲线的交点来确定解结构。但是,如果可以测量其他RDC数据,则代数曲线不再通常相交。我们在论文中解决了这种情况,并表明全局最优结构仍然可以通过分析来计算为最接近代表RDC的所有代数曲线的点。我们提出了新的算法,扩展了从中计算解析解的RDC的类型和数量。我们针对四种蛋白质的NMR数据评估了我们算法的性能:人类遍在蛋白,DNA损伤诱导蛋白I(DinI),葡萄球菌蛋白A(SpA)的Z结构域和蛋白G的第三个IgG结合结构域( GB3)。结果表明,我们的算法能够从有限的NMR数据中确定高分辨率的骨架结构。

著录项

  • 来源
  • 会议地点 Singapore(SG);Singapore(SG)
  • 作者单位

    Department of Computer Science, Duke University, Durham, NC 27707, USA;

    Department of Computer Science, Duke University, Durham, NC 27707, USA;

    Department of Biochemistry, Duke University Medical Center, Durham, NC 27707, USA;

    Department of Computer Science, Duke University, and Department of Biochemistry,rnDuke University Medical Center, Durham, NC 27707, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机器人技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号