首页> 外文会议>AI 2006: Advances in Artificial Intelligence; Lecture Notes in Artificial Intelligence; 4304 >Application of OWA Based Classifier Fusion in Diagnosis and Treatment offering for Female Urinary Incontinence
【24h】

Application of OWA Based Classifier Fusion in Diagnosis and Treatment offering for Female Urinary Incontinence

机译:基于OWA的分类器融合在女性尿失禁诊治中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Classifier fusion is a process that combines a set of outputs from multiple classifiers in order to achieve a more reliable and complete decision. In this work, the application of Ordered Weighted Averaging (OWA) operator as a classifier fusion approach, for diagnosing and offering the treatment of female urinary incontinence has been investigated. In this study, a classifier combination system has been constructed on four underlying individual classifiers, with different approaches including two multi-layer perceptrons, a generalized feed forward and a support vector machine. The system combines the decisions of these classifiers and is considered as a medical council based on only clinical patients data. Instead of choosing very accurate and expensive data sources like urodynamic, cystoscopy and voiding cystourethrogeram as paraclinical tests, we can nominate a small group of experts and use not so costly clinical measurements and then take experts' judgments and weight them by the level of expertise they have. Considering only clinical patient data which gathered from Iran urology medical center, the accuracy of OWA based classifier fusion system in diagnosis of urinary incontinence types improved 2.02%, 4.11% and 8.27% comparing the accuracy obtained by best individual underlying classifier, simple averaging and majority voting respectively.
机译:分类器融合是一种将来自多个分类器的一组输出组合在一起的过程,以实现更可靠,更完整的决策。在这项工作中,研究了有序加权平均(OWA)运算符作为分类器融合方法的应用,以诊断和提供女性尿失禁的治疗方法。在这项研究中,一个分类器组合系统已经在四个基础的单个分类器上构建,采用了不同的方法,包括两个多层感知器,一个广义前馈和一个支持向量机。该系统结合了这些分类器的决策,被认为是仅基于临床患者数据的医学委员会。我们可以选择一小部分专家并使用不太昂贵的临床测量方法,然后选择专家的判断,然后根据他们的专业知识水平对其进行加权,而不是选择尿道动力学,膀胱镜检查和排尿性半胱氨酸神经酰胺等非常准确和昂贵的数据源作为辅助临床试验。有。仅考虑从伊朗泌尿科医学中心收集的临床患者数据,基于OWA的分类器融合系统在尿失禁类型诊断中的准确性与最佳个体基础分类器,简单平均和多数方法所获得的准确性相比,分别提高了2.02%,4.11%和8.27%分别投票。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号