首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >Obstacle Avoidance Path Planning for Mobile Robot Based on Ant-Q Reinforcement Learning Algorithm
【24h】

Obstacle Avoidance Path Planning for Mobile Robot Based on Ant-Q Reinforcement Learning Algorithm

机译:基于Ant-Q强化学习算法的移动机器人避障路径规划

获取原文
获取原文并翻译 | 示例

摘要

Path planning is an important task in mobile robot control. When the robot must move rapidly from any arbitrary start positions to any target positions in environment, a proper path must avoid both static obstacles and moving obstacles of arbitrary shape. In this paper, an obstacle avoidance path planning approach for mobile robots is proposed by using Ant-Q algorithm. Ant-Q is an algorithm in the family of ant colony based methods that are distributed algorithms for combinatorial optimization problems based on the metaphor of ant colonies. In the simulation, we experimentally investigate the sensitivity of the Ant-Q algorithm to its three methods of delayed reinforcement updating and we compare it with the results obtained by other heuristic approaches based on genetic algorithm or traditional ant colony system. At last, we will show very good results obtained by applying Ant-Q to bigger problem: Ant-Q find very good path at higher convergence rate.
机译:路径规划是移动机器人控制中的重要任务。当机器人必须从环境中的任意起始位置快速移动到目标位置时,正确的路径必须同时避开静态障碍物和任意形状的移动障碍物。本文提出了一种基于蚁群算法的移动机器人避障路径规划方法。 Ant-Q是基于蚁群的方法家族中的一种算法,是基于蚁群隐喻的组合优化问题的分布式算法。在仿真中,我们实验研究了Ant-Q算法对其三种延迟补强更新方法的敏感性,并将其与其他基于遗传算法或传统蚁群系统的启发式方法获得的结果进行了比较。最后,我们将展示通过将Ant-Q应用于更大的问题而获得的非常好的结果:Ant-Q在更高的收敛速度下找到了很好的路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号