首页> 外文会议>Advances in Bioinformatics and Computational Biology >Prediction of Protein-Protein Binding Hot Spots: A Combination of Classifiers Approach
【24h】

Prediction of Protein-Protein Binding Hot Spots: A Combination of Classifiers Approach

机译:蛋白质-蛋白质结合热点的预测:分类器方法的组合

获取原文
获取原文并翻译 | 示例

摘要

In this work we approach the problem of predicting protein binding hot spot residues through a combination of classifiers. We consider a comprehensive set of structural and chemical properties reported in the literature for characterizing hot spot residues. Each component classifier considers a specific set of properties as feature set and their output are combined by the mean rule. The proposed combination of classifiers achieved a performance of 56.6%, measured by the F-Measure with corresponding Recall of 72.2% and Precision of 46.6%. This performance is higher than those reported by Darnel et al. [4] for the same data set, when compared through a t-test with a significance level of 5%.
机译:在这项工作中,我们通过分类器的组合来解决预测蛋白质结合热点残基的问题。我们考虑了文献中报道的用于表征热点残留物的一组全面的结构和化学性质。每个组件分类器都将一组特定的属性视为特征集,并且它们的输出将通过均值规则进行组合。拟议的分类器组合通过F度量测得的性能为56.6%,相应的召回率为72.2%,精度为46.6%。该性能高于Darnel等人的报告。 [4]对于同一数据集,通过显着性水平为5%的t检验进行比较时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号