首页> 外文会议>Active and passive signatures >Manifold Learning for Compression and Generalization of Euclidean Invariant Signatures of Surface Shapes
【24h】

Manifold Learning for Compression and Generalization of Euclidean Invariant Signatures of Surface Shapes

机译:流形学习用于表面形状的欧氏不变签名的压缩和泛化

获取原文
获取原文并翻译 | 示例

摘要

We introduce an approach to the efficient recognition of families of surface shapes in range images. This builds upon earlier work on Tripod Operators (TOs), a method for extracting small sets of N points from 3D surface data in a canonical way such that coordinate independent shape descriptions can be efficiently generated and compared. Using TOs, a specific surface shape generates a signature which is a manifold of dimension ≤ 3 in a feature space of dimension d = N - 3. A runtime application of a TO on surface data generates a d-vector whose distance from the signature manifold is closely related to the likelihood of a match. Ordnance identification is a motivating application.rnIn order to use TOs for recognizing objects from large sets of known shapes, and families of shapes, we introduce the use of manifold learning to represent the signature manifolds with piecewise analytic descriptions instead of discrete point sets. We consider the example of generalizing the signatures of several artillery shells which are qualitatively the same in shape, but metrically different. This can yield a signature that is only slightly more complex than the originals, but enables efficient recognition of a continuous family of shapes.
机译:我们介绍了一种有效识别距离图像中的表面形状族的方法。这是建立在三脚架操作器(TOs)早期工作的基础上的,三脚架操作器是一种以规范的方式从3D表面数据中提取少量N点的方法,从而可以有效地生成和比较独立于坐标的形状描述。使用TO,特定的表面形状会生成一个签名,该签名是维数为d = N-3的特征空间中维数≤3的流形。在表面数据上对TO进行运行时应用会生成一个d矢量,该矢量与签名流形的距离与匹配的可能性密切相关。为了使用兵器识别,要使用TOs来识别大量已知形状和形状族中的物体,我们引入流形学习方法,以分段分析描述代替离散点集来表示特征流形。我们考虑一个概括几个炮弹的特征的例子,这些炮弹的形状在质量上是相同的,但在度量上是不同的。这可以产生仅比原件复杂一点的签名,但可以有效识别连续的形状系列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号