首页> 外文会议>4th workshop on analytics for noisy unstructured text data 2010 >The Effects of Learner Errors on the Development of a Collocation Detection Tool
【24h】

The Effects of Learner Errors on the Development of a Collocation Detection Tool

机译:学习者错误对搭配检测工具开发的影响

获取原文
获取原文并翻译 | 示例

摘要

Texts produced by language learners often contain a fair amount of noise, such as misspellings, grammar errors and word-choice errors. These pose a challenge to designing an automated tool to process these texts, partly because most existing tools used in text processing preliminary to linguistic analysis, such as POS-tagging and syntactic parsing, are trained on native-speaker data from which errors have been edited out, and are not designed to deal with atypical errors produced by language learners. In designing and implementing an NLP or a computer-assisted language learning (CALL) tool, determining which "non-pertinent" errors (i.e. errors not specifically targeted by the tool) to deal with and how exactly to deal with them can have a measurable impact on the tool performance. This paper discusses how dealing with some of the "non-pertinent" learner errors in the development of an automated tool to detect miscollocations in learner texts significantly reduces potential tool errors.
机译:语言学习者产生的文本通常包含相当多的噪音,例如拼写错误,语法错误和单词选择错误。这些对设计用于处理这些文本的自动化工具构成了挑战,部分原因是在语言分析之前的文本处理中使用的大多数现有工具(例如POS标记和句法解析)都接受了以母语为基础的数据的训练,这些数据已从中编辑了错误而不是旨在解决语言学习者所产生的非典型错误。在设计和实施NLP或计算机辅助语言学习(CALL)工具时,确定要处理的“非相关”错误(即该工具未专门针对的错误)以及如何准确地处理它们对工具性能的影响。本文讨论了在开发一种自动工具以检测学习者文本中的错位时如何处理一些“无关”的学习者错误,如何显着减少潜在的工具错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号