首页> 外文会议>3rd social media mining for health applications workshop amp; shared task >Automatic Identification of Drugs and Adverse Drug Reaction Related Tweets
【24h】

Automatic Identification of Drugs and Adverse Drug Reaction Related Tweets

机译:自动识别药物和药物不良反应相关推文

获取原文
获取原文并翻译 | 示例

摘要

We describe our submissions to the Third Social Media Mining for Health Applications Shared Task. We participated in two tasks (tasks 1 and 3). For both tasks, we experimented with a traditional machine learning model (Naive Bayes Support Vector Machine (NBSVM)), deep learning models (Con-volutional Neural Networks (CNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)), and the combination of deep learning model with SVM. We observed that the NBSVM reaches superior performance on both tasks on our development split of the training data sets. Official result for task 1 based on the blind evaluation data shows that the predictions of the NBSVM achieved our team's best F-score of 0.910 which is above the average score received by all submissions to the task. On task 3, the combination of of BiLSTM and SVM gives our best F-score for the positive class of 0.394.
机译:我们将描述提交给“第三次健康应用共享任务社交媒体挖掘”的提交内容。我们参加了两个任务(任务1和3)。对于这两项任务,我们都尝试了传统的机器学习模型(朴素贝叶斯支持向量机(NBSVM)),深度学习模型(卷积神经网络(CNN),长期短期记忆(LSTM)和双向LSTM(BiLSTM) )),以及将深度学习模型与SVM相结合。我们观察到,在我们训练数据集的开发拆分中,NBSVM在两项任务上均达到了卓越的性能。根据盲目评估数据得出的任务1的官方结果表明,NBSVM的预测达到了我们团队的最佳F分数0.910,该分数高于所有对该任务提交者所获得的平均分数。在任务3中,BiLSTM和SVM的组合为0.394的正向类别提供了最佳F得分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号