【24h】

Fisher: An Efficient Container Load Prediction Model with Deep Neural Network in Clouds

机译:Fisher:基于云的深层神经网络的高效集装箱负荷预测模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, more and more applications have been deployed in container, and prediction of container load is essential in Clouds for improving resource utilization and achieving service-level agreements. However, accurate prediction of container load in Clouds remains an extremely challenge because the container load fluctuates drastically at small timescales. Furthermore, with many metrics of container in Clouds, it is hard to find which metrics are going to be useful. To address these challenges, we design an efficient container load prediction model named Fisher to improve the accuracy and efficiency of prediction. It mainly includes two modules: a metrics selection module and a neural network training module. We first selects relevant metrics by metrics selection module which is a novel algorithm for shape-based time-series clustering. Afterwards, we apply a powerful deep neural network model built with bidirectional long short-term memory to predict actual load one-step-ahead. We evaluate Fisher using a 30-day load trace from a data center with 500 containers. Experiments show that Fisher can reduce training metrics while maintaining prediction accuracy. More importantly, our model significantly improves prediction accuracy over 50% compared to other state-of-the-art methods based on auto regressive integrated moving-average and long short-term memory.
机译:最近,越来越多的应用程序已部署在容器中,并且在Clouds中预测容器负载对于提高资源利用率和达成服务级别协议至关重要。但是,准确地预测Clouds中的容器负载仍然是一个巨大的挑战,因为容器负载会在较小的时间范围内急剧波动。此外,由于Clouds中有许多容器指标,因此很难找到哪些指标将是有用的。为了应对这些挑战,我们设计了一个名为Fisher的有效集装箱装载预测模型,以提高预测的准确性和效率。它主要包括两个模块:指标选择模块和神经网络训练模块。我们首先通过指标选择模块选择相关指标,这是一种基于形状的时间序列聚类的新颖算法。之后,我们将使用强大的深度神经网络模型(该模型以双向长短期记忆构建)来提前预测实际负载。我们使用来自500个容器的数据中心的30天负载跟踪来评估Fisher。实验表明,Fisher可以减少训练指标,同时保持预测准确性。更重要的是,与其他基于自回归积分移动平均和长短期记忆的最新方法相比,我们的模型将预测准确度大大提高了50%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号