...
首页> 外文期刊>Journal of chemical information and modeling >Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks
【24h】

Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks

机译:深度置信:用于计算深神经网络可靠预测误差的计算有效框架

获取原文
获取原文并翻译 | 示例
           

摘要

Deep learning architectures have proved versatile in a number of drug discovery applications, including the modeling of in vitro compound activity. While controlling for prediction confidence is essential to increase the trust, interpretability, and usefulness of virtual screening models in drug discovery, techniques to estimate the reliability of the predictions generated with deep learning networks remain largely underexplored. Here, we present Deep Confidence, a framework to compute valid and efficient confidence intervals for individual predictions using the deep learning technique Snapshot Ensembling and conformal prediction. Specifically, Deep Confidence generates an ensemble of deep neural networks by recording the network parameters throughout the local minima visited during the optimization phase of a single neural network. This approach serves to derive a set of base learners (i.e., snapshots) with comparable predictive power on average that will however generate slightly different predictions for a given instance. The variability across base learners and the validation residuals are in turn harnessed to compute confidence intervals using the conformal prediction framework. Using a set of 24 diverse IC_(50) data sets from ChEMBL 23, we show that Snapshot Ensembles perform on par with Random Forest (RF) and ensembles of independently trained deep neural networks. In addition, we find that the confidence regions predicted using the Deep Confidence framework span a narrower set of values. Overall, Deep Confidence represents a highly versatile error prediction framework that can be applied to any deep learning-based application at no extra computational cost.
机译:深度学习架构已经证明了多种药物发现应用中的多才多艺,包括在体外化合物活性的造型中的建模。在控制预测信心的同时,对于增加药物发现中虚拟筛查模型的信任,解释性和有用性至关重要,估计利用深度学习网络产生的预测可靠性的技术仍然很大程度上是欠缺的。在这里,我们呈现了深入的信心,一个框架,用于计算使用深度学习技术的个人预测的有效和有效的置信区间快照合奏和保形预测。具体地,通过在单个神经网络的优化阶段期间访问的整个局部最小值中记录网络参数来产生深度神经网络的整体的深度置信度。这种方法有助于导出一组基础学习者(即,快照),其平均值是相当的预测功率,但是,对于给定实例,将生成略微不同的预测。基础学习者和验证残差的可变性又利用使用保形预测框架计算置信区间。使用来自ChemBL 23的一组24种不同的IC_(50)数据集,我们显示快照集合在随机森林(RF)和独立培训的深神经网络的集合上执行。此外,我们发现使用深度置信框架预测的置信区跨越一个较窄的值集。总的来说,深度置信度是一种高度通用的误差预测框架,可以在没有额外的计算成本上应用于任何基于深度学习的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号