首页> 外文会议>2013 IEEE Workshop on Memetic Computing >A coevolving memetic algorithm for simultaneous partitional clustering and feature weighting
【24h】

A coevolving memetic algorithm for simultaneous partitional clustering and feature weighting

机译:同时分区聚类和特征加权的协同进化模因算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a coevolving Memetic clustering algorithm namely CoMCA for simultaneous partitional clustering and feature weighting. Particularly, CoMCA uses a coevolving particle swarm optimization (PSO) with two swarms for the global search of optimal combination of cluster centroids and feature weights. In each iteration of PSO, a local search based on K-means and gradient descent is introduced to fine-tune the best solution. Comparison study of CoMCA to K-means, PSO clustering, Fuzzy C-means, and WK-Means on test data demonstrates that CoMCA is robust in highlighting relevant features and attaining better (or competitive) performance than the other counterpart algorithms in terms of inter-cluster variance and Rand Index.
机译:提出了一种协同进化的Memetic聚类算法CoMCA,用于同时分区聚类和特征加权。特别地,CoMCA使用带有两个群的协同进化粒子群优化(PSO)来全局搜索聚类质心和特征权重的最佳组合。在PSO的每次迭代中,都会引入基于K均值和梯度下降的局部搜索来微调最佳解决方案。 CoMCA与K均值,PSO聚类,Fuzzy C均值和WK-Means在测试数据上的比较研究表明,在互操作方面,CoMCA在突出相关特征并获得优于(或竞争)性能方面比其他同类算法强大-群集方差和兰德指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号