首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection
【24h】

A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection

机译:同时进行聚类和特征选择的Niching Memetic算法

获取原文
获取原文并翻译 | 示例

摘要

Clustering is inherently a difficult task, and is made even more difficult when the selection of relevant features is also an issue. In this paper we propose an approach for simultaneous clustering and feature selection using a niching memetic algorithm. Our approach (which we call NMA_CFS) makes feature selection an integral part of the global clustering search procedure and attempts to overcome the problem of identifying less promising locally optimal solutions in both clustering and feature selection, without making any a priori assumption about the number of clusters. Within the NMA_CFS procedure, a variable composite representation is devised to encode both feature selection and cluster centers with different numbers of clusters. Further, local search operations are introduced to refine feature selection and cluster centers encoded in the chromosomes. Finally, a niching method is integrated to preserve the population diversity and prevent premature convergence. In an experimental evaluation we demonstrate the effectiveness of the proposed approach and compare it with other related approaches, using both synthetic and real data.
机译:聚类本质上是一项艰巨的任务,当相关特征的选择也是一个问题时,聚类会变得更加困难。在本文中,我们提出了一种使用小生境模因算法的同时聚类和特征选择方法。我们的方法(我们称为NMA_CFS)使特征选择成为全局聚类搜索过程的组成部分,并试图克服在聚类和特征选择中识别不太有前途的局部最优解决方案的问题,而无需事先假设集群。在NMA_CFS过程中,设计了一个可变的复合表示形式,以对特征选择和具有不同数量簇的簇中心进行编码。此外,引入局部搜索操作以细化特征选择和在染色体中编码的聚类中心。最后,整合了一种生态位方法以保持种群多样性并防止过早收敛。在实验评估中,我们证明了所提方法的有效性,并使用综合和真实数据将其与其他相关方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号