首页> 外文会议>2012 IEEE Visual Communications and Image Processing. >Generalized MMSD feature extraction using QR decomposition
【24h】

Generalized MMSD feature extraction using QR decomposition

机译:使用QR分解的广义MMSD特征提取

获取原文
获取原文并翻译 | 示例

摘要

Multiple Maximum scatter difference (MMSD) discriminant criterion is an effective feature extraction method that computes the discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. However, singular value decomposition (SVD) of two times is involved in MMSD, making this method impractical for high dimensional data. In this paper, we propose a novel method for feature extraction and classification based on MMSD criterion, called generalized MMSD (GMMSD), which employs QR decomposition rather than SVD. Unlike MMSD, GMMSD does not require the computation of the whole scatter matrix. Instead, it computes the discriminant vectors from both the range of whitenizated input data matrix and the null space of the within-class scatter matrix. We evaluate the effectiveness of the GMMSD method in terms of classification accuracy in the reduced dimensional space. Our experiments on two facial expression databases demonstrate that the GMMSD method provides favorable performance in terms of both recognition accuracy and computational efficiency.
机译:多重最大散布差异(MMSD)判别准则是一种有效的特征提取方法,可从类间散布矩阵的范围和类内散布矩阵的零空间两者中计算出判别矢量。但是,MMSD涉及两次奇异值分解(SVD),因此该方法对于高维数据不切实际。在本文中,我们提出了一种基于MMSD准则的特征提取和分类新方法,称为通用MMSD(GMMSD),该方法采用QR分解而不是SVD。与MMSD不同,GMMSD不需要计算整个散射矩阵。取而代之的是,它从白化的输入数据矩阵的范围和类内散布矩阵的零空间两者中计算判别向量。我们根据降维空间中的分类精度评估了GMMSD方法的有效性。我们在两个面部表情数据库上的实验表明,GMMSD方法在识别准确性和计算效率方面均提供了良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号