首页> 外文期刊>Journal of visual communication & image representation >Generalized multiple maximum scatter difference feature extraction using QR decomposition
【24h】

Generalized multiple maximum scatter difference feature extraction using QR decomposition

机译:利用QR分解的广义多重最大散射差异特征提取。

获取原文
获取原文并翻译 | 示例

摘要

Multiple maximum scatter difference (MMSD) discriminant criterion is an effective feature extraction method that computes the discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. However, singular value decomposition (SVD) of two times is involved in MMSD, rendering this method impractical for high dimensional data. In this paper, we propose a generalized MMSD (GMMSD) criterion for feature extraction and classification. GMMSD allows relatively-free selection of a suitable transformation matrix to reduce dimensions. Based on GMMSD criterion, we demonstrate that the same discriminant information can be extracted by QR decomposition, which is more efficient than SVD. Next, GMMSD is compared with several classical feature extraction methods to justify the validity of the proposed method. Our experiments on three face databases and two facial expression databases demonstrate that GMMSD provides favorable recognition performance with high computational efficiency.
机译:多重最大散布差异(MMSD)判别准则是一种有效的特征提取方法,可从类间散布矩阵的范围和类内散布矩阵的零空间两者中计算出判别矢量。但是,MMSD涉及两次奇异值分解(SVD),这使得该方法对于高维数据不切实际。在本文中,我们提出了一种用于特征提取和分类的通用MMSD(GMMSD)标准。 GMMSD允许相对自由地选择合适的转换矩阵以减小尺寸。基于GMMSD准则,我们证明可以通过QR分解提取相同的判别信息,这比SVD更有效。接下来,将GMMSD与几种经典特征提取方法进行比较,以证明所提出方法的有效性。我们在三个面部数据库和两个面部表情数据库上的实验表明,GMMSD具有良好的识别性能和较高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号