首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >A Multiple Maximum Scatter Difference Discriminant Criterion for Facial Feature Extraction
【24h】

A Multiple Maximum Scatter Difference Discriminant Criterion for Facial Feature Extraction

机译:面部特征提取的多重最大散射差判别准则

获取原文
获取原文并翻译 | 示例

摘要

Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart-multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD outperforms state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigen face, Fisher face, and complete LDA.
机译:最大散布差异(MSD)判别准则是最近提出的用于模式分类的二进制判别准则,该准则使用广义散布差异而不是广义瑞利商作为类可分离性度量,从而在解决小样本大小问题时避免了奇点问题。基于此标准的MSD分类器在面部识别任务上已经非常有效,但是由于它们是二进制分类器,因此在大规模分类任务上效率不高。为了解决该问题,本文将面向分类的二元标准推广到其面部特征提取的多对多MSD(MMSD)判别标准。基于这种新的判别准则的MMSD特征提取方法是一种新的基于子空间的特征提取方法。与大多数其他基于子空间的特征提取方法不同,MMSD从类间散布矩阵的范围和类内散布矩阵的零空间计算其判别矢量。 MMSD在理论上是优雅的,并且易于计算。在基准数据库FERET上进行的大量实验研究表明,MMSD的性能优于最新的面部特征提取方法,例如零空间方法,直接线性判别分析(LDA),特征面,Fisher面和完整的LDA。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号