首页> 外文会议>2012 IEEE Visual Communications and Image Processing. >Sparse representation of texture patches for low bit-rate image compression
【24h】

Sparse representation of texture patches for low bit-rate image compression

机译:用于低比特率图像压缩的纹理补丁的稀疏表示

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a sparse representation based approach for low bit-rate image compression using the learnt over-complete dictionary of texture patches. We first propose to compress each patch of the image with sparse and compressible linear combinations (via nonzero coefficients) of texture patterns encoded in a dictionary for image patches. Then, we find out that the compressibility and sparsity of coefficients can be achieved by the proposed recursive procedure of solving ℓ1 optimization problem of sparse representation. Moreover, rather than transform-based patterns (e.g. DCT), we explore the basic texture patterns from other training images with a learning algorithm based on the gradient descent, to form the over-complete dictionary. The experimental results demonstrate the effectiveness of the proposed approach.
机译:本文提出了一种基于稀疏表示的低比特率图像压缩方法,该方法使用了学习到的纹理补丁的超完备字典。我们首先建议使用稀疏且可压缩的纹理图案线性组合(通过非零系数)压缩图像的每个斑块,这些纹理模式编码在用于图像斑块的字典中。然后,通过求解稀疏表示的ℓ 1 最优化问题的递归方法,可以发现系数的可压缩性和稀疏性。此外,我们使用基于梯度下降的学习算法探索其他训练图像的基本纹理图案,而不是基于变换的图案(例如DCT),以形成过度完整的字典。实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号