首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Compressibility Constrained Sparse Representation With Learnt Dictionary for Low Bit-Rate Image Compression
【24h】

Compressibility Constrained Sparse Representation With Learnt Dictionary for Low Bit-Rate Image Compression

机译:具有可学习性的字典的可压缩性约束的稀疏表示,用于低比特率图像压缩

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a compressibility constrained sparse representation (CCSR) approach to low bit-rate image compression using a learnt over-complete dictionary of texture patches. Conventional sparse representation approaches for image compression are based on matching pursuit (MP) algorithms. Actually, the weakness of these approaches is that they are not stable in terms of sparsity of the estimated coefficients, thereby resulting in the inferior performance in low bit-rate image compression. In comparison with MP, convex relaxation approaches are more stable for sparse representation. However, it is intractable to directly apply convex relaxation approaches to image compression, as their coefficients are not always compressible. To utilize convex relaxation in image compression, we first propose in this paper a CCSR formulation, imposing the compressibility constraint on the coefficients of sparse representation for each image patch. In addition, we work out the CCSR formulation to obtain sparse and compressible coefficients, through recursively solving the (ell _{1}) -norm optimization problem of sparse representation. Given these coefficients, each image patch can be represented by the linear combination of texture elements encoded in an over-complete dictionary, learnt from other training images. Finally, low bit-rate image compression can be achieved, owing to the sparsity and compressibility of coefficients by our CCSR approach. The experimental results demonstrate the effectiveness and superiority of the CCSR approach on compressing the natural and remote sensing images at low bit-rates.
机译:本文提出了一种可压缩的稀疏表示(CCSR)方法,该方法使用学习过的纹理补丁的完整字典来实现低比特率图像压缩。用于图像压缩的常规稀疏表示方法基于匹配追踪(MP)算法。实际上,这些方法的缺点在于,就估计系数的稀疏性而言,它们是不稳定的,从而导致在低比特率图像压缩中的性能较差。与MP相比,凸松弛方法对于稀疏表示更稳定。但是,将凸松弛方法直接应用于图像压缩是很困难的,因为它们的系数并不总是可压缩的。为了在图像压缩中利用凸松弛,我们首先在本文中提出一种CCSR公式,将可压缩性约束强加在每个图像补丁的稀疏表示系数上。此外,我们通过递归求解 (ell _ {1})

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号