首页> 外文期刊>Image Processing, IET >Single image super-resolution based on sparse representation using dictionaries trained with input image patches
【24h】

Single image super-resolution based on sparse representation using dictionaries trained with input image patches

机译:基于稀疏表示的单图像超分辨率使用用输入图像修补程序培训的词典

获取原文
获取原文并翻译 | 示例

摘要

In this study, an efficient self-learning method for image super-resolution (SR) is presented. In the proposed algorithm, the input image is divided into equal size patches. Using these patches, a dictionary is learned based on K-SVD, referred to as high resolution (HR) dictionary. Then, by down-sampling, the columns of the dictionary, called atoms, a low resolution (LR) version of the dictionary is obtained. An initial estimate of the SR image is constructed using the bicubic interpolation on the input image. Then in an iterative algorithm, the difference between the down-sampled version of the estimated SR image and the input image is obtained. This difference image, which includes reconstructed details is enlarged using sparse representation and LR/HR dictionaries. The enlarged detail is added to the latest reconstructed SR image. This process gradually improves the quality of the initial SR image. After several iterations, the reconstructed image is an SR version of the input image. Experimental results confirm that the proposed method performance is promising.
机译:在该研究中,提出了一种用于图像超分辨率(SR)的有效的自学习方法。在所提出的算法中,输入图像被分成相等的块状。使用这些补丁,基于K-SVD来学习字典,称为高分辨率(HR)字典。然后,通过下采样,获得称为原子的字典的列,称为字典的低分辨率(LR)版本。使用输入图像上的双向插值构建SR图像的初始估计。然后,在迭代算法中,获得估计的SR图像和输入图像的下采样版本之间的差异。使用稀疏表示和LR / HR字典来放大包括重建细节的该差异图像。放大的细节被添加到最新的重建的SR图像中。该过程逐渐提高了初始SR图像的质量。在几次迭代之后,重建的图像是输入图像的SR版本。实验结果证实,提出的方法表现很有前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号