首页> 外文期刊>Neurocomputing >Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction
【24h】

Multitask dictionary learning and sparse representation based single-image super-resolution reconstruction

机译:基于多任务字典学习和稀疏表示的单图像超分辨率重建

获取原文
获取原文并翻译 | 示例

摘要

Recent researches have shown that the sparse representation based technology can lead to state of art super-resolution image reconstruction (SRIR) result. It relies on the idea that the low-resolution (LR) image patches can be regarded as down sampled version of high-resolution (HR) images, whose patches are assumed to have a sparser presentation with respect to a dictionary of prototype patches. In order to avoid a large training patches database and obtain more accurate recovery of HR images, in this paper we introduce the concept of examples-aided redundant dictionary learning into the single-image super-resolution reconstruction, and propose a multiple dictionaries learning scheme inspired by multitask learning. Compact redundant dictionaries are learned from samples classified by /(-means clustering in order to provide each sample a more appropriate dictionary for image reconstruction. Compared with the available SRIR methods, the proposed method has the following characteristics: (1) introducing the example patches-aided dictionary learning in the sparse representation based SRIR, in order to reduce the intensive computation complexity brought by enormous dictionary, (2) using the multitask learning and prior from HR image examples to reconstruct similar HR images to obtain better reconstruction result and (3) adopting the offline dictionaries learning and online reconstruction, making a rapid reconstruction possible. Some experiments are taken on testing the proposed method on some natural images, and the results show that a small set of randomly chosen raw patches from training images and small number of atoms can produce good reconstruction result. Both the visual result and the numerical guidelines prove its superiority to some start-of-art SRIR methods.
机译:最近的研究表明,基于稀疏表示的技术可以导致最新的超分辨率图像重建(SRIR)结果。它依赖于这样的想法,即低分辨率(LR)图像补丁可被视为高分辨率(HR)图像的降采样版本,假定其补丁相对于原型补丁字典具有较稀疏的表示形式。为了避免庞大的训练补丁数据库并获得更准确的HR图像恢复,本文将示例辅助冗余字典学习的概念引入单图像超分辨率重建中,并提出了启发性的多字典学习方案。通过多任务学习。从/(-均值聚类)分类的样本中学习紧凑冗余字典,以便为每个样本提供更合适的图像重建字典。与可用的SRIR方法相比,该方法具有以下特点:(1)介绍示例补丁稀疏表示的SRIR中的辅助字典学习,以减少巨大字典带来的密集计算复杂性,(2)使用多任务学习并先于HR图像实例重建相似的HR图像以获得更好的重建结果,(3 )采用离线字典学习和在线重建的方法,使得快速重建成为可能。通过对一些自然图像进行测试实验,结果表明,从训练图像中随机选择了一小部分原始补丁和少量的原始图像。原子可以产生良好的重建结果。指南证明了它比某些最新的SRIR方法的优越性。

著录项

  • 来源
    《Neurocomputing》 |2011年第17期|p.3193-3203|共11页
  • 作者单位

    Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Department of Electrical Engineering, Xidian University, Xi'an 710071, China;

    Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Department of Electrical Engineering, Xidian University, Xi'an 710071, China;

    National Key Lab of Radar Signal Processing, Department of Electrical Engineering, Xidian University, Xi'an 710071, China;

    Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Department of Electrical Engineering, Xidian University, Xi'an 710071, China;

    Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, Department of Electrical Engineering, Xidian University, Xi'an 710071, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    super-resolution; sparse representation; dictionary learning; multitask learning;

    机译:超分辨率稀疏表示字典学习;多任务学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号