首页> 外文会议>2012 IEEE Conference on Computational Intelligence for Financial Engineering amp; Economics. >Stock trading system based on portfolio beta and evolutionary algorithms
【24h】

Stock trading system based on portfolio beta and evolutionary algorithms

机译:基于投资组合β和进化算法的股票交易系统

获取原文
获取原文并翻译 | 示例

摘要

This paper proposed a new evolutionary algorithm for generating trading rules on stock market, which is called Probabilistic Genetic Network Programming (P-GNP). P-GNP represents its solutions using graph structures based on probability. It has been clarified that P-GNP works well especially in dynamic environments. In the proposed hybrid stock trading model, P-GNP is applied to generating stock trading rules using variance of fitness values and probability. The unique point is that the generalization ability of P-GNP is improved by considering the robust fitness function and the Q value of the branch obtained by Sarsa Learning. Generally speaking, the hybrid intelligent system consists of three steps, the priority selection by portfolio β, the optimization by Genetic Relation Algorithm (GRA) and stock trading by P-GNP. In the simulations, the stock trading system is trained using the stock prices of 10 brands selected from the Nikkei 500 Index, then the generalization ability is tested. From the simulation results, it is clarified that the trading rules created by the proposed P-GNP model obtain much higher profits than the traditional methods and its effectiveness has been confirmed.
机译:本文提出了一种新的进化算法来生成股票交易规则,称为概率遗传网络编程(P-GNP)。 P-GNP使用基于概率的图结构表示其解决方案。已经阐明,P-GNP尤其在动态环境下效果很好。在提出的混合股票交易模型中,使用适合值和概率的方差将P-GNP应用于生成股票交易规则。唯一的一点是,通过考虑鲁棒的适应度函数和Sarsa Learning获得的分支的Q值,可以提高P-GNP的泛化能力。一般而言,混合智能系统包括三个步骤,分别是通过投资组合β进行优先级选择,通过遗传关系算法(GRA)进行优化以及通过P-GNP进行股票交易。在模拟中,使用从Nikkei 500指数中选择的10个品牌的股票价格训练股票交易系统,然后测试泛化能力。从仿真结果可以看出,所提出的P-GNP模型创建的交易规则获得的利润要比传统方法高得多,其有效性得到了证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号