首页> 外文会议>2012 IEEE 25th computer security foundations symposium >Measuring Information Leakage Using Generalized Gain Functions
【24h】

Measuring Information Leakage Using Generalized Gain Functions

机译:使用广义增益函数测量信息泄漏

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces g-leakage, a rich generalization of the min-entropy model of quantitative information flow. In g-leakage, the benefit that an adversary derives from a certain guess about a secret is specified using a gain function g. Gain functions allow a wide variety of operational scenarios to be modeled, including those where the adversary benefits from guessing a value close to the secret, guessing a part of the secret, guessing a property of the secret, or guessing the secret within some number of tries. We prove important properties of g-leakage, including bounds between min-capacity, g-capacity, and Shannon capacity. We also show a deep connection between a strong leakage ordering on two channels, C_1 and C_2, and the possibility of factoring C_1 into C_2 C_3, for some C_3. Based on this connection, we propose a generalization of the Lattice of Information from deterministic to probabilistic channels.
机译:本文介绍了g泄漏,它是定量信息流的最小熵模型的丰富概括。在g泄漏中,使用增益函数g指定对手从对秘密的某种猜测中获得的收益。增益功能允许对各种操作场景进行建模,包括使对手从猜测接近机密的值,猜测机密的一部分,猜测机密的属性或在一定数量的范围内猜测机密而受益的情况。尝试。我们证明了g泄漏的重要属性,包括最小容量,g容量和Shannon容量之间的界限。我们还显示了在两个通道C_1和C_2上的强泄漏排序与某些C_3可能将C_1分解为C_2 C_3的可能性之间的深层联系。基于这种联系,我们提出了信息格从确定性到概率性渠道的概括。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号