【24h】

Pattern classification using trainable logic networks

机译:使用可训练逻辑网络的模式分类

获取原文

摘要

The author describes a new pattern classification algorithm whichhas the simplicity of the well-known multilinear classifier but iscapable of learning patterns through supervised training. This isachieved by replacing the discretely valued logic functions employed inthe conventional classifier with continuous extensions. The resultingdifferentiable relationship between network parameters and outputspermits the use of gradient descent methods to select optimal classifierparameters. This classifier can be implemented as a network whosestructure is well suited to highly parallel hardware implementation.Essentially, the same network can be used both to compute weightadjustments and perform classifications, so that the same hardware couldbe used for both rapid training and classification. The author hasapplied this classifier to a noisy parity detection problem. Theclassification error frequency obtained in this example comparesfavourably with the theoretical lower bound
机译:作者描述了一种新的模式分类算法,该算法具有著名的多线性分类器的简单性,但能够通过监督训练来学习模式。这是通过用连续扩展替换常规分类器中使用的离散值逻辑函数来实现的。网络参数和输出之间的结果可区分关系允许使用梯度下降方法来选择最佳分类器参数。该分类器可实现为结构非常适合高度并行硬件实现的网络。本质上,同一网络可用于计算权重调整和执行分类,因此同一硬件可用于快速训练和分类。作者已将此分类器应用于嘈杂的奇偶检测问题。在本例中获得的分类错误频率与理论下限比较好

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号