首页> 外国专利> GENERALIZED EXPECTATION MAXIMIZATION

GENERALIZED EXPECTATION MAXIMIZATION

机译:广义期望最大化

摘要

Techniques are described that extend supervised machine-learning algorithms for use with semi-supervised training. Random labels are assigned to unlabeled training data, and the data is split into k partitions. During a label-training iteration, each of these k partitions is combined with the labeled training data, and the combination is used train a single instance of the machine-learning model. Each of these trained models are then used to predict labels for data points in the k−1 partitions of previously-unlabeled training data that were not used to train of the model. Thus, every data point in the previously-unlabeled training data obtains k−1 predicted labels. For each data point, these labels are aggregated to obtain a composite label prediction for the data point. After the labels are determined via one or more label-training iterations, a machine-learning model is trained on data with the resulting composite label predictions and on the labeled data set.
机译:描述了扩展监督机器学习算法的技术,以用于半监督培训。 随机标签被分配给未标记的训练数据,数据被分成K分区。 在标签训练迭代期间,这些K分区中的每一个都与标记的训练数据相结合,并且使用该组合使用机器学习模型的单个实例。 然后,这些培训的模型中的每一个用于预测以前未标记的训练数据的K-1分区中的数据点标签,该数据不用于训练模型。 因此,先前未标记的训练数据中的每个数据点获得K-1预测标签。 对于每个数据点,聚合这些标签以获得数据点的复合标签预测。 在通过一个或多个标签训练迭代确定标签之后,通过产生的复合标签预测和标记的数据集进行数据培训机器学习模型。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号