首页> 外国专利> Noise-robust feature extraction using multi-layer principal component analysis

Noise-robust feature extraction using multi-layer principal component analysis

机译:使用多层主成分分析的抗噪特征提取

摘要

Extracting features from signals for use in classification, retrieval, or identification of data represented by those signals uses a “Distortion Discriminant Analysis” (DDA) of a set of training signals to define parameters of a signal feature extractor. The signal feature extractor takes signals having one or more dimensions with a temporal or spatial structure, applies an oriented principal component analysis (OPCA) to limited regions of the signal, aggregates the output of multiple OPCAs that are spatially or temporally adjacent, and applies OPCA to the aggregate. The steps of aggregating adjacent OPCA outputs and applying OPCA to the aggregated values are performed one or more times for extracting low-dimensional noise-robust features from signals, including audio signals, images, video data, or any other time or frequency domain signal. Such extracted features are useful for many tasks, including automatic authentication or identification of particular signals, or particular elements within such signals.
机译:从信号中提取特征以用于对那些信号表示的数据进行分类,检索或识别,这使用了一组训练信号的“失真判别分析”(DDA)来定义信号特征提取器的参数。信号特征提取器采用具有时态或空间结构的一维或多维信号,将定向主成分分析(OPCA)应用于信号的有限区域,汇总在空间或时间上相邻的多个OPCA的输出,并应用OPCA合计。执行一次或多次汇总相邻OPCA输出并将OPCA应用于汇总值的步骤,以从包括音频信号,图像,视频数据或任何其他时域或频域信号的信号中提取低维噪声鲁棒特征。这样提取的特征对于许多任务是有用的,包括自动认证或识别特定信号或此类信号内的特定元素。

著录项

  • 公开/公告号US7457749B2

    专利类型

  • 公开/公告日2008-11-25

    原文格式PDF

  • 申请/专利权人 CHRIS BURGES;JOHN PLATT;

    申请/专利号US20060422862

  • 发明设计人 CHRIS BURGES;JOHN PLATT;

    申请日2006-06-07

  • 分类号G10L15/00;

  • 国家 US

  • 入库时间 2022-08-21 19:29:07

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号