首页> 外国专利> Methods and systems for identifying and localizing objects based on features of the objects that are mapped to a vector

Methods and systems for identifying and localizing objects based on features of the objects that are mapped to a vector

机译:用于基于被映射到矢量的对象的特征来识别和定位对象的方法和系统

摘要

A method of identifying and localizing objects belonging to one of three or more classes, includes deriving vectors, each being mapped to one of the objects, where each of the vectors is an element of an N-dimensional space. The method includes training an ensemble of binary classifiers with a CISS technique, using an ECOC technique. For each object corresponding to a class, the method includes calculating a probability that the associated vector belongs to a particular class, using an ECOC probability estimation technique. In another embodiment, increased detection accuracy is achieved by using images obtained with different contrast methods. A nonlinear dimensional reduction technique, Kernel PCA, was employed to extract features from the multi-contrast composite image. The Kernel PCA preprocessing shows improvements over traditional linear PCA preprocessing possibly due to its ability to capture high-order, nonlinear correlations in the high dimensional image space.
机译:一种识别和定位属于三个或更多类之一的对象的方法,包括推导向量,每个向量都映射到一个对象,其中每个向量都是N维空间的元素。该方法包括使用ECOC技术利用CISS技术训练二进制分类器的整体。对于对应于类别的每个对象,该方法包括使用ECOC概率估计技术来计算相关矢量属于特定类别的概率。在另一个实施例中,通过使用以不同的对比方法获得的图像来实现提高的检测精度。非线性降维技术Kernel PCA被用于从多对比度合成图像中提取特征。内核PCA预处理显示了对传统线性PCA预处理的改进,这可能是由于其能够捕获高维图像空间中的高阶非线性相关性。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号