首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Method of Multiple Dynamic Objects Identification and Localization Based on Laser and RFID
【2h】

A Method of Multiple Dynamic Objects Identification and Localization Based on Laser and RFID

机译:一种基于激光和RFID的多动态对象识别与定位的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In an indoor environment, object identification and localization are paramount for human-object interaction. Visual or laser-based sensors can achieve the identification and localization of the object based on its appearance, but these approaches are computationally expensive and not robust against the environment with obstacles. Radio Frequency Identification (RFID) has a unique tag ID to identify the object, but it cannot accurately locate it. Therefore, in this paper, the data of RFID and laser range finder are fused for the better identification and localization of multiple dynamic objects in an indoor environment. The main method is to use the laser range finder to estimate the radial velocities of objects in a certain environment, and match them with the object’s radial velocities estimated by the RFID phase. The method also uses a fixed time series as “sliding time window” to find the cluster with the highest similarity of each RFID tag in each window. Moreover, the Pearson correlation coefficient (PCC) is used in the update stage of the particle filter (PF) to estimate the moving path of each cluster in order to improve the accuracy in a complex environment with obstacles. The experiments were verified by a SCITOS G5 robot. The results show that this method can achieve an matching rate of 90.18% and a localization accuracy of 0.33m in an environment with the presence of obstacles. This method effectively improves the matching rate and localization accuracy of multiple objects in indoor scenes when compared to the Bray-Curtis (BC) similarity matching-based approach as well as the particle filter-based approach.
机译:在室内环境中,对象识别和本地化对于人对象交互至关重要。基于视觉或激光的传感器可以基于其外观来实现物体的识别和定位,但这些方法是计算昂贵的并且对具有障碍物的环境而不是鲁棒。射频识别(RFID)具有唯一的标记ID以识别对象,但无法准确定位它。因此,在本文中,RFID和激光测距仪的数据被融合用于在室内环境中更好地识别和定位多个动态物体。主要方法是使用激光测距仪估计某些环境中物体的径向速度,并与由RFID相位估计的物体的径向速度匹配。该方法还使用固定的时间序列为“滑动时间窗口”,以找到每个窗口中每个RFID标记的最高相似性的群集。此外,Pearson相关系数(PCC)用于粒子滤波器(PF)的更新阶段,以估计每个集群的移动路径,以便提高具有障碍物的复杂环境中的精度。通过SCITOS G5机器人验证了实验。结果表明,该方法可以在存在障碍物的环境中达到90.18%的匹配速率和0.33米的定位精度。与基于Bray-Curtis(BC)相似性匹配的方法相比,该方法有效地提高了室内场景中多个物体的匹配速率和定位精度。基于粒子滤波器的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号