首页> 中国专利> 在表面上预先固定半导体芯片的方法、制造半导体器件的方法和半导体器件

在表面上预先固定半导体芯片的方法、制造半导体器件的方法和半导体器件

摘要

说明了一种用于在表面(20)上固定半导体芯片(10)的方法,其中在所述半导体芯片(10)的安装面上施加焊料连接(30),在所述焊料连接(30)的背离安装面的侧上施加金属粘接层(40),将所述表面(20)预热到温度T1,将所述金属粘接层(40)以固态与经过预热的表面(20)机械接触,其中所述金属粘接层(40)在与经过预热的表面(20)机械接触时至少部分熔化,然后将所述表面(20)冷却至室温,其中所述半导体芯片(10)至少部分冶金地预先连接到所述表面(20),其中所述焊料连接(30)在所述金属粘接层(40)冶金连接到所述表面(20)期间保持固态。在所述焊料连接(30)和所述金属粘接层(40)之间可以施加阻挡层(50)。所述表面(20)可以包括印刷电路板或壳体的安装面。此外还说明了一种用于制造半导体器件的方法以及一种半导体器件,其中将如上所述预先固定在所述表面(20)上的半导体芯片(10)焊接到所述表面(20)上以形成最终得到的焊料连接(60),其中在所述焊接时完全熔化所述焊料连接(30)和所述金属粘接层(40),并且形成最终得到的焊料连接(60),所述最终得到的焊料连接包括在其组成方面与所述焊料连接(30)和所述金属粘接层(40)不同的合金。如果存在阻挡层(50),则阻挡层在焊接期间同样溶解并且在最终得到的焊料连接(60)内形成相。

著录项

  • 公开/公告号CN112602182A

    专利类型发明专利

  • 公开/公告日2021-04-02

    原文格式PDF

  • 申请/专利权人 欧司朗OLED股份有限公司;

    申请/专利号CN201980038843.1

  • 发明设计人 K·穆勒;H·克拉森;M·豪夫曼;

    申请日2019-06-03

  • 分类号H01L21/60(20060101);H01L23/485(20060101);H01L33/62(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人张涛;刘春元

  • 地址 德国雷根斯堡

  • 入库时间 2023-06-19 10:25:58

说明书

技术领域

说明了一种用于在表面上固定半导体芯片的方法、一种用于制造半导体器件的方法以及一种半导体器件。

发明内容

至少一个实施方式的任务是说明一种用于在表面上固定半导体芯片的改进方法。至少一个实施方式的另一任务是说明一种用于制造半导体器件的改进方法。至少一个实施方式的又一任务是说明一种具有改进的特性的半导体器件。这些任务通过独立权利要求的主题来解决。其他实施方式是从属权利要求以及说明书的主题。

说明了一种用于在表面上固定半导体芯片的方法。“固定”在这里和下文中应理解为利用所述方法实现了预先固定,该预先固定可以用作例如借助于焊接的导致永久固定的预备阶段。

所述半导体芯片可以是例如光电子半导体芯片,例如LED芯片。

根据一种实施方式,在所述方法中在所述半导体芯片的安装面上施加焊料连接。所述半导体芯片的安装面应理解为所述半导体芯片的应当施加到所述表面上的平面。因此,所述安装面还可以包括一个或多个连接焊盘,所述连接焊盘存在于所述半导体芯片的应当用于将所述半导体芯片固定所述表面上的侧上。所述焊料连接可以以层的形式施加到所述安装面上。

这里和下文中,焊料连接应当理解为适合于焊接的材料。例如,该材料可以是纯金属以及合金。所述焊料连接可以直接沉积在晶片上。

根据另一实施方式,在所述焊料连接的背离所述安装面的侧上施加金属粘接层。可以将所述金属粘接层整面地施加到所述焊料连接的区域上。金属粘接层在这里和下文中应理解为包含以下材料的层,所述材料必要时在升高的温度的作用下展现出固定作用。所述固定作用或粘合作用例如可以通过表面张力产生,并且使得可以将所述半导体芯片保持在所述表面上的适当位置。

根据另一实施方式,将所述表面预热至温度T1。这应理解为在施加所述半导体芯片之前加热所述半导体芯片应当施加在其上的表面,其中温度T1包括高于室温的温度。

根据另一实施方式,将所述金属粘接层与经过预热的表面机械接触,其中所述金属粘接层在与经过预热的表面机械接触时至少部分熔化。因此,所述金属粘接层以固态与所述表面接触,并且当所述金属粘接层与经过预热的表面接触时至少部分熔化。由于所述表面升高的温度T1,对所述金属粘接层产生了温度作用,由此所述金属粘接层至少部分熔化并且从而可以展现其粘合作用。因此,通过针对性地设置所述表面的温度T1,所述金属粘接层可以变为至少部分液态,使得所述表面可以被所述金属粘接层至少部分地浸润。因此,所述粘合作用首先基于所述金属粘接层的至少部分熔体的表面张力。

此外,所述表面可以具有表面焊盘,所述金属粘接层与所述表面焊盘机械接触。于是所述表面的预热还包括所述表面焊盘的预热。这里和下文中,术语“表面”也应理解为具有表面焊盘的表面,即使这未被特别提及。如果所述安装面也包括连接焊盘,则所述安装面被施加到所述表面上,使得连接焊盘和表面焊盘彼此相对,并且在所述方法之后的焊接之后可以在半导体芯片和表面之间形成接触部。

根据另一实施方式,然后将所述表面冷却至室温,其中将所述半导体芯片至少部分冶金地连接到所述表面。因此,所述金属粘接层可以通过与经过预热的表面接触而至少部分地熔化,然后借助于表面张力将所述半导体芯片固定在所述表面上,在所述金属粘接层冷却并由此导致固化之后,粘合作用基于冶金连接,由此保证将所述半导体芯片固定在所述表面上。

根据另一实施方式,说明了一种用于在表面上固定半导体芯片的方法,其中在所述半导体芯片的安装面上施加焊料连接,在所述焊料连接的背离安装面的侧上施加金属粘接层,将所述表面预热到温度T1,将所述金属粘接层与经过预热的表面机械接触,其中所述金属粘接层在与经过预热的表面机械接触时至少部分熔化,然后将所述表面冷却至室温,其中所述半导体芯片至少部分冶金地连接到所述表面。

在所述方法中,可以有利地省去有机熔剂或粘合剂的使用,并且因此原则上可以避免后续器件中的有机污染。由此也避免了费事的清洁过程。

在工业上常见的芯片组装中,使用具有一定粘接作用的熔剂以将所述半导体芯片保持在适当的位置,直到实际的焊接过程为止。但是,熔剂残留物通常必须通过在后的湿法化学清洁过程去除。清洁介质通常难以进入熔剂残留物,这使得对清洁作用的检查极为困难。这样的残留物也可能会阻碍以后要施加的材料(例如填料)的连接,从而损害所述材料的稳定作用。

替代地,常规地也使用没有熔剂作用的临时粘合剂,但是所述临时粘合剂仅具有时间有限的粘合作用。过程技术上必须确保这样的粘合剂可以蒸发而不会留下任何残留物,否则可能导致与焊接过程发生不期望的相互作用。

利用这里描述的方法可以避免这种有机污染和由此导致的清洁过程,这可以导致更简单执行的过程和在质量上改进的器件。

根据另一实施方式,所述金属粘接层的固相线温度≤T1。这里和下文中,固相线温度应理解为金属或合金开始熔化时所述金属或合金的温度。因此,如果所述金属粘接层的固相线温度≤T1,则当所述粘接层与经过预热的表面接触时,所述粘接层可以至少部分熔化。如果用S1表示所述金属粘接层的固相线温度,则下式成立:S1≤T1≤S1+30°C。在该温度范围内可以实现所述金属粘接层的至少部分熔化,并且在此过程中可以避免所述焊料连接的额外熔化。

特别地,可以选择所述金属粘接层的组成,使得其具有宽的熔化范围。这应理解为固相线温度S1和液相线温度(即材料完全熔化时的温度)之间存在很大一段距离。

根据另一实施方式,所述焊料连接的固相线温度>T1。这样的温度使得所述焊料连接在所述金属粘接层冶金连接到所述表面期间能够保持固态。

根据另一实施方式,在所述焊料连接和所述金属粘接层之间施加阻挡层。这样的阻挡层可以防止所述焊料连接和所述金属粘接层的材料(例如通过扩散的方式)混合。因此,所述阻挡层也可以称为分离层。

根据另一实施方式,所述焊料连接具有Sn或基于Sn的合金或由Sn或基于Sn的合金组成。基于Sn的合金在这里和下文中应理解为包含Sn作为主要成分的合金。这样的合金可以是例如SnAg或SnAgCu。在此,SnAg合金可以包含例如份额为1至4质量%的Ag。

根据另一实施方式,所述金属粘接层具有选自由SnIn、SnBi和In构成的组的材料。这样的金属或合金在所述方法中可以很好地形成部分熔体或熔体,以便借助于表面张力将所述半导体芯片保持并固定在所述表面上的适当位置。

根据另一实施方式,所述阻挡层具有选自由Ti和Ni构成的组的材料。由这样的材料制成的层可以特别好地防止所述焊料连接和所述金属粘接层的材料扩散,并且同时可以在所述方法之后的焊接步骤中予以溶解。

根据另一实施方式,将所述焊料连接以电镀的方式沉积到所述安装面上。此外,可以以从20μm至50μm的范围内选择的厚度施加所述焊料连接。

根据另一实施方式,所述金属粘接层被蒸镀上或溅镀上。此外,可以以从1μm至5μm的范围内选择的厚度来施加所述金属粘接层。因此,所述金属粘接层的厚度比所述焊料连接的厚度小大约一个数量级。这导致所述金属粘接层在由焊料连接和金属粘接层组成的总焊料体积中的体积份额小到足以可靠地防止在所述方法之后的焊接步骤后最终得到的焊料连接的过早熔化。另一方面,也可以有针对性地使用附加的合金组分来改善最终得到的焊料连接的强度特性,所述附加的合金组分帮助所述金属粘接层形成最终得到的焊料连接。例如,利用SnBi合金作为金属粘接层,可以显著提高最终得到的焊料连接的抗蠕变性。为此,最终得到的2至3重量%的Bi份额是有意义的。

根据另一实施方式,所述阻挡层被蒸镀上或贱镀上。此外,可以以从10μm至50μm的范围中选择的厚度来施加所述阻挡层。例如,含有Ti或由Ti组成的阻挡层的厚度可以为10μm至50μm,或者含有Ni或由Ni组成的阻挡层的厚度可以为10μm至50μm。阻挡层的该厚度范围保证所述阻挡层的足够的紧密性,这种紧密性可以防止金属粘接层和焊料连接之间的扩散。

根据另一实施方式,所述表面包括印刷电路板或壳体的安装面。因此,利用所述方法例如可以将半导体芯片固定在印刷电路板上并在随后的方法中焊接所述半导体芯片。

利用所述方法也可以将多个半导体芯片先后固定在一个表面上,然后再将所述多个半导体芯片全部共同焊接到所述表面上,这也可以称为“批量回流”(Mass Reflow)。在利用这里描述的方法将所述半导体芯片先后固定在所述表面上的同时,温度T1低到足以不会对已经固定的半导体芯片造成损害作用。

此外,说明了一种用于制造半导体器件的方法,所述半导体器件包括至少一个安装在表面上的半导体芯片,其中根据上述实施方式的方法在表面上固定半导体芯片,然后将所述半导体芯片焊接到所述表面上以形成最终得到的焊料连接。

因此利用所述方法,由冶金连接制造永久的焊接连接,所述冶金连接是通过上述用于在表面上固定半导体芯片的方法所获得的。因此,结合以上方法描述的所有特征也适用于用于制造半导体器件的方法,反之亦然。

最终得到的焊料连接在这里和下文中应理解为以下材料,该材料是由焊料连接和金属粘接层的材料制成的合金,特别是均质合金。如果存在阻挡层,则在最终得到的焊料连接中还存在所述阻挡层的溶解后的材料的颗粒。

因此在用于制造半导体器件的方法中,有压力的附着过程,也就是将所述金属粘接层与经过预热的表面之间机械接触的过程,与无压力的焊接过程脱耦。这样可以防止焊料被挤压。此外,借助于用于在表面上固定半导体芯片的方法,也可以将大量半导体芯片先后施加并固定在所述表面上,然后可以同时焊接所述大量半导体芯片。因此,在用于固定的所述方法期间仅温度T1作用于所述半导体芯片,高于T1的焊接温度的作用持续时间对于所有半导体芯片都是相同的并且相对较短。

常规的,半导体芯片通常借助于顺序焊接来施加,这导致了以下问题,即必须将至少较大面积的表面或整个表面加热到过程温度。由此温度对所述半导体芯片以及由此对焊接连接的作用持续时间原则上取决于所述表面上的位置。从而例如被放置的第一半导体芯片保持在焊接温度,直到最后一个半导体芯片也被放置到所述表面上并被焊接并且所述表面总体上被冷却为止。在所述表面上的封装密度越高,这种效果就越大。

因此,利用这里描述的用于制造半导体器件的方法使得可以在组装过程中以相对较低的温度预先固定半导体芯片,以便在随后的过程步骤中将所述半导体芯片一起焊接,并且将所述半导体芯片仅短暂地暴露在高焊接温度下。

根据另一实施方式,在还原气氛中执行所述焊接。还原性气氛可以例如借助于合成气体或甲酸来制造。

根据另一实施方式,在大于或等于所述焊料连接的液相线温度的温度T2时执行所述焊接。T2也大于或等于所述金属粘接层的液相线温度。由此保证所述焊料连接和所述金属粘接层完全熔化,并且附加地所述金属粘接层与所述焊料连接完全混合成均质合金。如果L2表示所述焊料连接的液相线温度,则下式可以成立:L2≤T2≤L2+20°C。由此焊接温度保持低到足以不损坏所述半导体器件。

通过所述焊料连接和所述金属粘接层在没有压力的情况下熔化,可以利用由于最终得到的液体焊料连接的表面张力而导致的半导体芯片或连接焊盘对表面或表面焊盘的自定心作用。由于该效果,在用于固定所述半导体芯片的方法期间,可以容忍较低的放置精度,并且可以实现连接焊盘之间、即接触部之间的较小距离。

如果在所述焊料连接和所述金属粘接层之间存在阻挡层,则在焊接过程中该阻挡层会溶解。然后例如可以形成NiSn或TiSn相作为在最终得到的焊料连接中的颗粒。

根据另一实施方式,在焊接时完全熔化所述焊料连接和所述金属粘接层,并且形成最终得到的焊料连接,所述最终得到的焊料连接包括在其组成方面与所述焊料连接和所述金属粘接层不同的合金。可以有针对性地影响最终得到的焊料连接的合金组成,其方式是所述金属粘接层的体积份额和组成与所述焊料连接的体积和组成协调。

此外,说明了一种半导体器件,其具有安装在表面上的至少一个半导体芯片,并且所述半导体器件是借助于根据上述陈述用于制造半导体器件的方法来制造的。因此,与用于制造半导体器件的方法有关的所有特征也适用于所述半导体器件,反之亦然。

附图说明

所述方法和所述半导体器件的其他优点、优选实施方式和扩展从下面结合附图解释的实施例中得出。

图1A至图1C示出了用于在表面上固定半导体芯片的方法的方法步骤的示意性截面图,

图2示出了用于制造半导体器件的方法的方法步骤的示意性截面图,以及

图3A和3B示出了金属粘接层的材料的状态图。

在实施例和附图中,相同或相同作用的部件均设有相同的附图标记。所示出的部件以及这些部件彼此之间的比例不应视为按比例绘制。而是为了更好地理解而夸大地示出了附图的一些细节。

具体实施方式

图1A示出了应当施加在表面20上的半导体芯片10的示意性截面图。在例如可以是印刷电路板的表面20上具有表面焊盘21,半导体芯片10应当固定在表面焊盘21上。半导体芯片10的安装面包括连接焊盘11,在所述连接焊盘上又分别施加了焊料连接30、阻挡层50以及金属粘接层40。阻挡层50是可选的,并且取决于焊料连接30和金属粘接层40的组成不是绝对必要的。焊料连接30(例如SnAg)以20μm至50μm的厚度电镀地沉积在连接焊盘11上。阻挡层50以及金属粘接层40是分别蒸镀上或溅射上的。阻挡层50的厚度为10至50μm,金属粘接层的厚度为约1至5μm。作为阻挡层50例如可以沉积Ti或Ni。作为金属粘接层40例如可以施加InSn或BiSn合金。在InSn作为金属粘接层的情况下,需要阻挡层50,因为Sn和In容易混合,而这应当被避免。

如果没有连接焊盘11,则也可以想到将焊料连接30、可选的阻挡层50和金属粘接层40直接施加到半导体芯片10的安装面上,并且如果没有表面焊盘21(这里未示出),则使得金属粘接层40与表面20接触。

所述金属粘接层中In与Sn的比例或Bi与Sn的比例确定表面20必须被预热到的待追求温度T1。例如,温度T1在约60重量%的In情况下为140℃,或在约80重量%的In情况下为约170℃。如果将SnBi合金用作金属粘接层40,则一方面不是绝对需要阻挡层50的蒸镀或溅射,因为Sn和Bi仅在升高的温度时均匀地混合。在这种情况下,Bi与Sn的比例也用于确定温度T1。在约30重量%的Bi情况下,例如T1=150°C,在约10重量%的Bi情况下T1为190°C。

图1B以示意性截面图示出了将半导体芯片10施加到表面20上,其中使得金属粘接层40与表面焊盘21机械接触。连接焊盘11和表面焊盘21因此在很大程度上彼此相对。从图1B中可以看出,可以容忍较低的放置精度,因此连接焊盘21和表面焊盘11不必精确重合地叠加布置。如果在随后的用于制造半导体器件的方法中焊料连接30和金属粘接层40熔化,则表面张力确保半导体芯片10相对于表面焊盘21的自定心作用。

因为表面20以及因此还有表面焊盘21被预热到温度T1,所以金属粘接层40至少部分熔化,这在图1C中通过金属粘接层40的阴影线在示意性截面图中示出。由此,表面20至少部分地被金属粘接层40浸润。只要将表面20加热到温度T1,金属粘接层40的粘合作用就基于至少部分形成的熔体的表面张力。然后,如果将表面20冷却至室温,则金属粘接层40固化并且产生至少有限的冶金连接,在所述冶金连接处表面焊盘21被金属粘接层40的部分熔体浸润。

图2示出了根据用于制造半导体器件的方法的半导体器件的示意性截面图,其中焊接通过用于在表面上固定半导体芯片的方法获得的冶金连接,并且产生了最终得到的焊料连接60。

所述焊接在温度T2时进行,在该温度时金属粘接层40和焊料连接30都完全熔化,并且形成合金,即最终得到的焊料连接60。如果存在阻挡层50,则阻挡层50在焊接期间同样溶解并且在最终得到的焊料连接60内形成相。通过焊料连接30和金属粘接层40的无压力熔化,即整个焊料体积的无压力熔化,得到由于最终得到的焊料连接60的表面张力而导致的从连接焊盘11到表面焊盘21的自定心作用。由此补偿或校正了在将半导体芯片10固定在表面20上期间的放置不精确性。如果从一个连接焊盘11或表面焊盘21的中心到下一个连接焊盘11或表面焊盘21的中心的距离例如为50μm,则可以容忍在将半导体芯片10固定在表面20上时多达±10μm的放置不精确性,因为可以通过由于最终得到的焊料连接60的表面张力引起的自定心作用来校正所述放置不精确性。在常规方法中,最高±5μm的放置不精确性是可以接受的。

图3A示出了系统SnIn的状态图,该系统可以用作金属粘接层40。在y轴上给出以℃为单位的温度T,x轴表示以原子百分比at%或重量百分比wt%为单位的Sn在所述系统中的份额。根据该状态图得到SnIn的三种组成,这三种组成可以用作金属粘接层40。一方面,具有约80±5重量%的In的SnIn合金可以用作金属粘接层。这使得在金属粘接层40和焊料连接30之间需要阻挡层50,以防止焊料连接30和金属粘接层40在以后的焊接之前混合。在用于将半导体芯片10固定在表面20上的方法中使用160℃至190℃的温度T1,因为SnIn合金的固相线温度在150℃和180℃之间。然后在最终得到的焊料连接60中的铟含量低于在金属粘接层40中的铟含量,因为金属粘接层40的体积比焊料连接30的体积小大约一个数量级。

另一种可能性是使用铟份额为60±5重量%的SnIn合金。在这里,在焊料连接30和金属粘接层40之间也可能需要阻挡层50以防止材料混合。然后在温度T1>120°C时实现金属粘接层40的至少部分熔化。特别地,可以应用来自130℃至150℃范围的T1。

作为第三种可能性,也可以想到使用纯In。

图3B示出了可以用作金属粘接层40的SnBi的状态图。在y轴上给出以℃为单位的温度T,x轴表示以原子百分比at%或重量百分比wt%为单位的Bi在所述系统中的份额。在该系统中得到用作金属粘接层40的两种可能性。

一方面,可以使用Bi份额为10至15重量%的SnBi合金。这里也应当应用阻挡层50以防止焊料连接30和金属粘接层40之间的扩散。该系统的固相线温度为170℃至190℃,由此在用于对表面20进行预热的方法中使用的温度T1有利地选自180℃至200℃的范围。然后,在最终得到的焊料连接60中的Bi含量又比金属粘接层40中存在的Bi含量低。

此外,还可以使用Bi的份额为30±5重量%的SnBi合金,以形成金属粘接层40。然后可以在温度>138°C时实现金属粘接层40的部分熔化,由此有利地在140°C至160°C之间选择T1。在这种情况下,可以省去阻挡层50,因为由于强烈弯曲的溶解度曲线,SnBi仅在升高的温度时均匀地混合。

为了避免局部熔化的风险,在焊接之后最终得到的焊料连接60中的总Bi含量不应超过4重量%。另一方面,Bi的存在显著增加了最终得到的焊料连接60中的抗蠕变性,这可以提高耐温性,特别是在极端温度波动(温度循环)的情况下。

本发明不限于基于实施例的描述。而是本发明包括每个新特征以及特征的每种组合,这特别是包含权利要求中的特征的每种组合,即使该特征或该组合本身没有在权利要求或实施例中明确说明。

本专利申请要求德国专利申请102018114013.4的优先权,其公开内容通过引用结合于此。

附图标记列表

10 半导体芯片

20 表面

21 连接焊盘

11 表面焊盘

30 焊料连接

40 金属粘接层

50 阻挡层

60 最终得到的焊料连接。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号