首页> 中国专利> 一种以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物及其制备方法与应用

一种以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物及其制备方法与应用

摘要

本发明公开以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物及其制备方法与应用。本发明通过改变二氟代苯并噻二唑相邻的两个噻吩取代基按照长短结合的方式进行无规共聚,获得相应的无规共聚物。本发明所制备的以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物具有好的吸光性和溶液加工性,能制作面向聚合物太阳电池应用的吸光活性层,聚合物太阳电池具有高能量转换效率。本发明所制备的以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物,能使聚合物太阳电池获得好的热稳定性,而采用长侧链的交替共聚物无法使聚合物太阳电池获得同样的热稳定性。

著录项

  • 公开/公告号CN107840944A

    专利类型发明专利

  • 公开/公告日2018-03-27

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201711170781.9

  • 发明设计人 陈军武;钟安星;卿乐驰;

    申请日2017-11-22

  • 分类号C08G61/12(20060101);H01L51/42(20060101);H01L51/46(20060101);H01L51/48(20060101);

  • 代理机构44102 广州粤高专利商标代理有限公司;

  • 代理人何淑珍

  • 地址 511458 广东省广州市南沙区环市大道南路25号华工大广州产研院

  • 入库时间 2023-06-19 04:55:20

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-05-22

    授权

    授权

  • 2018-04-20

    实质审查的生效 IPC(主分类):C08G61/12 申请日:20171122

    实质审查的生效

  • 2018-03-27

    公开

    公开

说明书

技术领域

本发明涉及一种应用于聚合物太阳电池领域的新型聚合物,更具体是涉及一种以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物及其制备与应用。

背景技术

自1977年日本科学家白川英树发现聚乙炔导电以来,这种被称为“第四代高分子”材料的导电聚合物以其突出的光电性能吸引了众多科学家进行研究。导电高分子同具有相同或相近用途的无机材料相比,具有密度低,易加工,合成选择范围广等优点。由于这类材料结构的共轭特性,因此容易获得荧光性,对太阳光具有吸收能力,以及对载流子的输运能力,从而能够或可能在许多电子或光电子器件上得到应用,例如包括聚合物发光二极管,聚合物太阳电池,聚合物场效应晶体管等。潜在的应用前景和广泛的应用领域促使科学家竞相研究这类具有光电活性的共轭材料,包括多种共轭结构的小分子,以及聚乙炔,聚吡咯,聚噻吩,聚苯胺,聚芴,聚咔唑等。研究人员一直在努力寻求改善和提高聚合物发光二极管,聚合物太阳电池,聚合物场效应晶体管性能的方法,材料是最重要的因素之一。所以许多研究小组一直致力于开发具有高效率发光聚合物,以及高能量转换效率的光伏给体聚合物、载流子迁移率高的聚合物。要实现这些目标,需要研制更多的新型共轭聚合物材料。一些新型含苯并噻唑,苯并噻二唑的共轭聚合物也引起了研究人员的注目,“合成金属”(Synthetic Metals)156(2006)38对其光伏性质进行了研究。

聚合物太阳电池在光照下发电会出现器件温度升高,能实用的聚合物太阳电池因此需要具有良好的热稳定性。“先进材料”(Advanced Materials)26(2014) 2586报导了二氟代苯并噻二唑和联四噻吩为主链的交替共聚物及其在聚合物太阳电池中的应用。最近“自然通讯”(Nature Communications)8(2017)14541 报导了二氟代苯并噻二唑和联四噻吩为主链的交替共聚物在聚合物太阳电池中无法获得稳定性,从而对其应用形成制约。当前迫切需要发展能使聚合物太阳电池保持良好热稳定性的吸光活性层材料体系。此外,对于二氟代苯并噻二唑和联四噻吩为主链的交替共聚物通常需要长侧链才能获得溶液加工性,以制作能满足光电器件性能要求的薄膜;而无任何侧链或者采用2-乙基己基这种很短侧链的相应聚合物未见有能满足薄膜制作的报导。

发明内容

本发明的目的在于针对已有技术存在的缺点,提供以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物,具有好的溶液加工性。

本发明的目的还在于提供所述的以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物制备方法。

本发明的目的还在于提供所述的以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物在聚合物太阳电池中的应用,且电池器件具有好的热稳定性。

本发明以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物具有如下所示的结构:

其中,R为H原子或C1-C8的直链烷基或C1-C8的分叉烷基;0.7≤x<1, 0<y≤0.3,x+y=1;n=3~1000。

上述的无规共聚物制备方法是用两种含苯并噻二唑的二溴单体与联噻吩的双烷基锡单体进行无规共聚制备得到。

所述的以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物可应用于制备聚合物太阳电池的活性层。将所述的无规共聚物应用于聚合物本体异质结太阳电池的聚合物给体相,与电子受体材料富勒烯及其衍生物、非富勒烯电子受体材料混合制成溶液,涂覆在ITO玻璃或缓冲层上,制备成吸光活性层薄膜,然后在薄膜上蒸镀金属制备成器件。以该无规共聚物制作的聚合物太阳电池具有好的热稳定性。

与现有技术相比,本发明具有如下优点和效果:

所述以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物具有好的溶液加工性,避免了相应无侧链或只采用短侧链的交替共聚物无法溶液加工的问题。以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物具有良好的吸光性,能应用于制作聚合物太阳电池的吸光活性层,尤其与富勒烯受体共混制备的聚合物太阳电池比采用长侧链的交替共聚物有更高的能量转换效率,且表现出好的热稳定性。

附图说明

图1为FBT-Th4(1,4)-DT90EH10的薄膜吸收和常温下在CB溶液中的吸收吸收图谱。

图2为FBT-Th4(1,4)-DT80EH20的薄膜吸收和常温下在CB溶液中的吸收吸收图谱。

图3为所制备聚合物FBT-Th4(1,4)-DT90EH10的稀溶液变温吸收图。

图4为所制备聚合物FBT-Th4(1,4)-DT80EH20的稀溶液变温吸收图。

表1为聚合物太阳电池器件效率测试结果。

表2为聚合物太阳电池器件效率在80℃受热下的变化结果。

具体实施方式

以下结合具体实施例来对以二氟代苯并噻二唑和联四噻吩为主链的无规共聚物的制备与应用作进一步的说明。但本发明所要求的保护范围并不局限于实施例所涉及的范围。

实施例1:

5,6二氟-4,7-二溴-2,1,3-苯并噻二唑的制备,反应式如下:

在250毫升烧瓶中加入5,6二氟-2,1,3-苯并噻二唑(3.44g,20mmol),加入100毫升浓硫酸,充分溶解后,分三批加入DBDMH(二溴海因)(6.86g,24mmol),70℃下搅拌4小时。将反应物倒入冰水中,抽滤得到粗产物,过柱后用乙醇重结晶,抽滤后得到白色固体。经13CNMR分析测试表明为目标产物5,6二氟-4,7-二溴>

13C>

实施例2:

4,7-双[4-(2-癸基十四烷基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的两口烧瓶中加入5,6二氟-4,7-二溴-2,1,3-苯并噻二唑(330mg,1.00mmol),2-(三丁基锡)-4-(2-癸基十四烷基)噻吩(2.12g,3.00mmol),通氮气30分钟,然后加入二(三苯基膦)二氯化钯268毫克,在氮气保护下加入无水甲苯15 毫升,加热回流反应两天。反应结束后冷却至室温,倒入100毫升水中,用二氯甲烷萃取并用无水硫酸镁干燥有机相,分离后去除溶剂,用硅胶色谱柱分离得到黄色絮状物。经1HNMR,13CNMR分析测试表明为目标产物4,7-双[4-(2-癸基十四烷基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑。

1H>

13C>

实施例3:

4,7-双[5-溴-4-(2-癸基十四烷基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的单口瓶中加入4,7-双[4-(2-癸基十四烷基)噻吩-2-基]-5,6-二氟-2,1,3- 苯并噻二唑(808mg,0.8mmol)和15毫升四氢呋喃,在充分搅拌下加入溴代丁二酰亚胺(NBS)(315mg,1.76mmol),室温下避光反应24小时。反应结束后,将反应溶液加入水中,用二氯甲烷萃取并用水洗有机相,用无水硫酸钠干燥有机相,分离后出去溶剂并经用硅胶柱分离得到橙红色固体。经1HNMR,13CNMR,和元素分析测试表明为目标产物4,7-双[4-(2-癸基十四烷基)噻吩-2-基]-5,6-二氟>

1H>13C>

实施例4:

4,7-双[4-(2-乙基己基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的两口烧瓶中加入5,6-二氟-4,7-二溴-2,1,3-苯并噻二唑(330mg,1.00mmol),2-(三丁基锡)-4-2-(乙基己基)噻吩(1.40g,3.00mmol),通氮气30分钟,然后加入二(三苯基膦)二氯化钯268毫克,在氮气保护下加入无水甲苯15毫升,加热回流反应两天。反应结束后冷却至室温,倒入100毫升水中,用二氯甲烷萃取并用无水硫酸镁干燥有机相,分离后去除溶剂,用硅胶色谱柱分离得到黄色絮状物。经1HNMR,13CNMR分析测试表明为目标产物4,7-双[4-(2-乙基己基)噻吩>

1H>3,400MHz),δ(ppm):8.09(s,2H),7.19(s,2H),2.65(d,4H),>

13C>3,100MHz),δ(ppm):151.05,150.85,148.81,148.77,148.47,148.27,142.23,132.70,131.03,124.81,111.57,111.48,40.45,34.53,32.56,29.16,25.72,23.06,14.11,10.88。

实施例5:

4,7-双[5-溴-4-(2-乙基己基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的单口瓶中加入4,7-双[4-(2-乙基己基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑(420mg,0.8mmol)和15毫升四氢呋喃,在充分搅拌下加入溴代丁二酰亚胺(NBS)(315mg,1.76mmol),室温下避光反应24小时。反应结束后,将反应溶液加入水中,用二氯甲烷萃取并用水洗有机相,用无水硫酸钠干燥有机相,分离后出去溶剂并经用硅胶柱分离得到橙红色固体。经1HNMR,13CNMR,表明为目标产物4,7-双[5-溴-4-(2-乙基己基)噻吩-2-基]-5,6-二氟-2,1,3-苯并噻二唑。

1H>3,400MHz),δ(ppm):δ7.93(s,2H),2.61(d,4H),1.72(m,2H),>

13C>3,100MHz),δ(ppm):151.19,150.99,148.60,148.54,147.93,141.92,132.49,132.44,131.21,115.25,115.25,111.11,40.14,33.90,32.64,28.92,25.87,23.22,14.28,11.01。

实施例6:

4,7-双噻吩-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的两口烧瓶中加入5,6-二氟-4,7-二溴-2,1,3-苯并噻二唑(330mg,1.00mmol),2-(三丁基锡)噻吩(1.06g,3.00mmol),通氮气30分钟,然后加入二(三苯基膦)二氯化钯268毫克,在氮气保护下加入无水甲苯15毫升,加热回流反应两天。反应结束后冷却至室温,倒入100毫升水中,用二氯甲烷萃取并用无水硫酸镁干燥有机相,分离后去除溶剂,用硅胶色谱柱分离得到黄色絮状物。经1HNMR,13CNMR分析测试表明为目标产物4,7-双噻吩-5,6-二氟-2,1,3-苯并噻二唑。

1H>3):δ8.29(d,1H,J=3.3Hz),7.61(d,1H,J=5.1Hz),>

13C>3):δ151.72,151.44,148.92,148.30,148.00,132.24,132.11,128.83,128.52,128.52,128.08。

实施例7:

4,7-双(5-溴噻吩)-5,6-二氟-2,1,3-苯并噻二唑的制备,反应式如下:

在50毫升的单口瓶中加入4,7-双噻吩-5,6-二氟-2,1,3-苯并噻二唑(240mg,0.8mmol)和15毫升四氢呋喃,在充分搅拌下加入溴代丁二酰亚胺(NBS)(315mg, 1.76mmol),室温下避光反应24小时。反应结束后,将反应溶液加入水中,用二氯甲烷萃取并用水洗有机相,用无水硫酸钠干燥有机相,分离后出去溶剂并经用硅胶柱分离得到橙红色固体。经1HNMR,13CNMR表明为目标产物4,7-双(5->

1H>3):δ8.01(d,1H,J=3.3Hz),7.79(d,1H,J=4.2Hz),>

13C>3):δ160.57,157.20,130.93,130.59,130.46,130.28,128.19,116.55,116.30,116.13。

实施例8:

聚合物FBT-Th4(1,4)的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴噻吩-2-基)-5,6-二氟-2,1,3-苯并噻二唑0.5毫摩尔、2,5-双(三甲基锡)噻吩0.5毫摩尔,三(二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应 7天。所得不带侧链的交替聚合物FBT-Th4(1,4)不溶于任何溶剂。

实施例9:

聚合物FBT-Th4(1,4)-EH的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-乙基己基)噻吩-2-基)-5,6-二氟-2,1,3-苯并噻二唑0.5毫摩尔、2,5-双(三甲基锡)噻吩0.5毫摩尔,三 (二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。所得带短侧链的交替聚合物FBT-Th4(1,4)-EH不溶于任何溶剂。

实施例10:

聚合物FBT-Th4(1,4)-DT的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-癸基十四烷基)噻吩 -2-基)-5,6-二氟-2,1,3-苯并噻二唑0.5毫摩尔、2,5-双(三甲基锡)噻吩0.5毫摩尔,三(二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。冷却后,用甲醇沉降出聚合物,干燥后的产物依次用甲醇、乙酸乙酯和氯仿、氯苯抽提,将氯苯溶液浓缩并在甲醇中沉降,最后产物在真空下干燥得到黑色聚合物FBT-Th4(1,4)-DT。所制带有长侧链的交替共聚物>4(1,4)-DT能溶液加工,所测的数均分子量为46400,重均分子量为78900。

实施例11:

聚合物FBT-Th4(1,4)-DT90EH10的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-癸基十四烷基)噻吩 -2-基)-5,6-二氟-2,1,3-苯并噻二唑0.45毫摩尔、4,7-双(5-溴-4-(2-乙基己基)噻吩 -2-基)-5,6-二氟-2,1,3-苯并噻二唑0.05毫摩尔和2,5-双(三甲基锡)噻吩0.5毫摩尔,三(二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。冷却后,用甲醇沉降出聚合物,干燥后的产物依次用甲醇、乙酸乙酯和氯仿、氯苯抽提,将氯苯溶液浓缩并在甲醇中沉降,最后产物在真空下干燥得到黑色聚合物FBT-Th4(1,4)-DT90EH10。所制无规共聚物>4(1,4)-DT90EH10能溶液加工,所测的数均分子量为81000,重均分子量为100000。FBT-Th4(1,4)-DT90EH10的稀溶液在不同温度下的吸收光谱见附图3。

实施例12:

聚合物FBT-Th4(1,4)-DT80EH20的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-癸基十四烷基)噻吩-2-基)-5,6-二氟-2,1,3-苯并噻二唑0.4毫摩尔、4,7-双(5-溴-4-(2-乙基己基)噻吩-2- 基)-5,6-二氟-2,1,3-苯并噻二唑0.1毫摩尔和2,5-双(三甲基锡)噻吩0.5毫摩尔,三 (二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。冷却后,用甲醇沉降出聚合物,干燥后的产物依次用甲醇、乙酸乙酯和氯仿、氯苯抽提,将氯苯溶液浓缩并在甲醇中沉降,最后产物在真空下干燥得到黑色聚合物FBT-Th4(1,4)-DT80EH20。所制无规共聚物>4(1,4)-DT80EH20能溶液加工,所测的数均分子量为81000,重均分子量为100000。FBT-Th4(1,4)-DT80EH20的稀溶液在不同温度下的吸收光谱见附图4。

实施例13:

聚合物FBT-Th4(1,4)-DT80的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-癸基十四烷基)噻吩 -2-基)-5,6-二氟-2,1,3-苯并噻二唑0.4毫摩尔、4,7-双(5-溴噻吩-2-基)-5,6-二氟 -2,1,3-苯并噻二唑0.1毫摩尔和2,5-双(三甲基锡)噻吩0.5毫摩尔,三(二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。冷却后,用甲醇沉降出聚合物,干燥后的产物依次用甲醇、乙酸乙酯和氯仿、氯苯抽提,将氯苯溶液浓缩并在甲醇中沉降,最后产物在真空下干燥得到黑色聚合物FBT-Th4(1,4)-DT80。所制无规共聚物FBT-Th4(1,4)-DT80能溶液加工,所测的数均分子量为42000,重均分子量为63000。

实施例14:

聚合物FBT-Th4(1,4)-DT70的制备,反应式如下:

在氩气气氛下向50毫升两口烧瓶加入4,7-双(5-溴-4-(2-癸基十四烷基)噻吩 -2-基)-5,6-二氟-2,1,3-苯并噻二唑0.35毫摩尔、4,7-双(5-溴噻吩-2-基)-5,6-二氟 -2,1,3-苯并噻二唑0.15毫摩尔和2,5-双(三甲基锡)噻吩0.5毫摩尔,三(二亚苄基丙酮)二钯8毫克和三邻甲苯基膦14毫克,溶解在10毫升甲苯中,加热回流下搅拌反应7天。冷却后,用甲醇沉降出聚合物,干燥后的产物依次用甲醇、乙酸乙酯和氯仿、氯苯抽提,将氯苯溶液浓缩并在甲醇中沉降,最后产物在真空下干燥得到黑色聚合物FBT-Th4(1,4)-DT70。所制无规共聚物FBT-Th4(1,4)-DT70能溶液加工,所测的数均分子量为23000,重均分子量为38000。

实施例15:

聚合物太阳电池器件效率比较。

聚合物太阳电池器件采用倒装结构,制作过程如下:以ITO导电玻璃作基板,ITO导电玻璃依次用洗液,丙酮,去离子水和乙醇超声清洗,然后放入真空干燥箱中70℃加热烘干存放。首先在ITO片上旋涂约30nm厚的ZnO作电子传输层,然后旋涂含有吸光活性层材料的溶液(当吸光活性层由聚合物给体与富勒烯受体构成时采用体积比为1:1的氯苯/邻二氯苯混合溶剂,聚合物给体与富勒烯受体的重量比为1:1.5;当吸光活性层由聚合物给体与非富勒烯受体构成时采用氯苯作溶剂,聚合物给体与非富勒烯受体的重量比为1:1),得到300nm厚度的吸光活性层,最后在真空蒸镀仓内(2×10-6mbar),通过掩膜板在活性层上蒸镀一层厚度为10nm的MoO3作为空穴传输层,蒸镀厚度为100nm的金属铝作为阴极。

聚合物太阳电池器件效率的结果见表1。

表1

当采用富勒烯PC70BM为受体材料时,基于无规共聚物>4(1,4)-DT90EH10和FBT-Th4(1,4)-DT80EH20的聚合物太阳电池器件的能量转换效率PCE分别为9.37%和8.37%,效率均高于采用长侧链的交替共聚物>4(1,4)-DT的8.25%。结果说明:与采用长侧链的交替共聚物相比,基于这些无规共聚物的聚合物太阳电池器件拥有效率优势。

当采用非富勒烯IDIC为受体材料时,基于无规共聚物>4(1,4)-DT90EH10和FBT-Th4(1,4)-DT80EH20的聚合物太阳电池器件的能量转换效率PCE分别为6.94%和6.25%。结果说明:这些无规共聚物也能与非富勒烯受体配合构成有效的吸光活性层。

非富勒烯IDIC的化学结构式如下:

实施例16:

聚合物太阳电池器件的热稳定性比较。

表2

按实施例15制作聚合物太阳电池器件,采用富勒烯PC70BM为受体材料。聚合物太阳电池器件在80℃受热下的效率变化见表2,为防止氧气的干扰,选择氮气气氛下进行受热。聚合物太阳电池器件经过6小时加热,基于无规共聚物>4(1,4)-DT90EH10的聚合物太阳电池器件的能量转换效率PCE从初始的>4(1,4)-DT80EH20的能量转换效率PCE从初始的8.37%变化到8.76%,对应的PCE保持率为104.6%;采用长侧链的交替共聚物FBT-Th4(1,4)-DT的PCE从初始的8.25%变化到6.98%,对应的PCE保持率为84.6%。结果说明:与采用长侧链的交替共聚物相比,基于这些无规共聚物的聚合物太阳电池器件能获得更好的热稳定性。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号