首页> 中国专利> 氮化铝压电薄膜及其制造方法、压电材、压电部件

氮化铝压电薄膜及其制造方法、压电材、压电部件

摘要

本发明提供一种氮化铝压电薄膜及其制造方法、压电材、压电部件。可得出呈氮极性且量产性优越的氮化铝压电薄膜。提供使含有锗的氮化铝压电薄膜(3)以及在基材(2)上通过溅射而含有锗的氮化铝压电薄膜生长的氮化铝压电薄膜的制造方法。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-09-04

    授权

    授权

  • 2016-11-23

    实质审查的生效 IPC(主分类):C23C14/06 申请日:20150302

    实质审查的生效

  • 2016-10-26

    公开

    公开

说明书

技术领域

本发明涉及能够作为压电体使用的含Ge的氮化铝压电薄膜及其制造方法,具有该压电薄膜的压电材以及压电部件。

背景技术

以往,提出了各种在氮化铝中掺杂微量的其他元素而成的压电薄膜的制造方法。例如,在下述的专利文献1中,公开了一种使铝和镓、铟或者钪以及氮在惰性气体环境下反应的反应溅射法。在专利文献1中,记载了通过将氧以0.8摩尔%以上、3.2摩尔%以下的比例同氮一起供给,而使极化方向反转的技术。

另外,在下述的专利文献2中,公开了Sc的含有率为0.5~50原子%的氮化铝压电薄膜。

专利文献1:日本特开2009-149953号公报

专利文献2:日本特开2011-15148号公报

根据专利文献1中记载的制造方法,能够得到极化方向与薄膜生长方向反转的氮化铝压电薄膜。然而,以高精度供给微量的氧非常困难。因此,量产性不充分。

另一方面,在专利文献2中,虽通过掺杂钪而得到压电性,但钪非常昂贵。另外,稳定地取得也较困难。此外,在专利文献2中,极化方向为薄膜生长方向亦即铝极性(Al polarity)的极化方向,无法得到具有与薄膜生长方向相反的极化方向的氮极性(N polarity)的极化方向的压电薄膜。

发明内容

本发明的目的在于提供极化方向为氮极性(N polarity),且量产性优越的氮化铝压电薄膜及其制造方法。本发明的其他的目的在于提供具有上述氮化铝压电薄膜的压电材以及压电部件。

本发明的氮化铝压电薄膜的特征在于,含有锗。

在本发明的氮化铝压电薄膜中,优选在锗和铝的浓度的合计为100原子%时,锗的浓度处于3~28原子%的范围。在此情况下,能够进一步容易地得到极化方向为氮极性(N polarity)的氮化铝压电薄膜。更加优选锗的浓度为4~21原子%的范围。在此情况下,能够更加有效地提高压电特性。进一步优选锗的浓度为5~16原子的范围。在此情况下,能够进一步有效地提高压电特性。

在本发明的氮化铝压电薄膜中,优选极化方向为氮极性(N polarity)。

在本发明的氮化铝压电薄膜的其他的形态中,优选极化方向为与薄膜生长方向相反的方向。

本发明的压电材具备基材和在基材上通过沉积法形成的氮化铝压电薄膜,该氮化铝压电薄膜是按照本发明构成的氮化铝压电薄膜。

本发明的压电部件的特征在于,具备按照本发明构成的氮化铝压电薄膜。

本发明的氮化铝压电薄膜的制造方法的特征在于,在基材上通过溅射使上述氮化铝压电薄膜生长。

在本发明的氮化铝压电薄膜的制造方法中,优选使用由Al构成的靶以及由Ge构成的靶、或者AlGe合金靶,边供给氮气边进行溅射。

根据本发明的氮化铝压电薄膜及其制造方法,能够容易地提供极化方向为氮极性(N polarity)的氮化铝压电薄膜。

在本发明的压电材以及压电部件中,由于具有按照本发明构成的含Ge的氮化铝压电薄膜,所以能够容易地提供例如层压了多个极化方向不同的压电薄膜的结构等。

附图说明

图1是表示氮化铝压电薄膜中的锗浓度和压电常数d33的关系的图。

图2是在本发明的第一实施方式的含Ge的氮化铝压电薄膜的制造方法中使用的装置的简要结构图。

图3是表示具有极化方向为铝极性(Al polarity)的氮化铝压电薄膜的压电部件的示意主视图。

图4是表示作为本发明的压电部件的一个实施方式的压电部件的示意主视图。

图5是表示向锗靶输入的输入电力和各元素的原子浓度的关系的图。

图6是在本发明的第二实施方式的含Ge的氮化铝压电薄膜的制造方法中使用的装置的简要结构图。

图7是表示本发明的压电部件的一个构造例的局部剖切主剖视图。

图8是表示本发明的压电部件的其他的构造例的主剖视图。

具体实施方式

以下,通过参照附图对本发明的具体的实施方式进行说明,明确本发明。

图4以示意主视图表示通过本发明的第一实施方式得到的压电部件。压电部件1具有由Si构成的基材2。在该基材2上形成有含Ge的氮化铝压电薄膜3。含Ge的氮化铝压电薄膜3如下述那样通过溅射法成膜。该含Ge的氮化铝压电薄膜3的极化方向为图示的箭头-Z方向。即,极化方向为与薄膜生长方向相反的方向的氮极性(N polarity)。

在上述含Ge的氮化铝压电薄膜3上形成有电极4。此外,虽未特殊地使用,但除了电极4之外,为了向含Ge的氮化铝压电薄膜施加电压,进一步设置一个以上的电极。或者,也可以使用由作为半导体的硅构成的基材2作为一方的电极,使用电极4作为另一方的电极。

基材2也作为通过溅射成膜含Ge的氮化铝压电薄膜3时的基材被使用。因此,基材2能够由适当的材料形成。在本实施方式中,基材2由低电阻的Si构成,作为电极发挥作用,不过也可以由Si以外的其他半导体形成。另外,基材2也可以由绝缘体、金属、有机树脂薄膜构成。在基材2为高电阻的材料的情况下,也可以在含Ge的氮化铝压电薄膜和基材2之间形成电极薄膜。

电极4由Ag、Al、Cu、Mo、W、Ta、Pt、Ru、Rh、Ir等的适当的金属或者合金构成。

如上所述,在本实施方式的压电部件1中,含Ge的氮化铝压电薄膜3的极化方向为氮极性(N polarity)。

通常,若通过溅射成膜氮化铝薄膜,则如图3所示的压电部件101的氮化铝压电薄膜103那样,极化方向变为Z方向。即极化方向变为与薄膜生长方向相同的方向。即为铝极性(Al polarity)。

本申请的发明人发现在通过溅射法形成氮化铝压电薄膜时,如果含有锗,则能够如本实施方式那样得到极化方向反转的压电薄膜,并以此完成本发明。如后文所述,若能够得到这样的极化方向反转的压电薄膜,则能够容易地得到极化方向不同的多个压电薄膜的层压体等。

以下,对上述含Ge的氮化铝压电薄膜3的具体的制造方法的实施方式进行说明。

图2是在本发明的第一实施方式的含Ge的氮化铝压电薄膜的制造方法中使用的装置的简要结构图。制造装置21为溅射装置。制造装置21具有腔室22。在腔室22内配置有加热装置24。在该加热装置24的下面安装基材12。

另一方面,在基材12的下方设置高频电源25、26。在高频电源25上设置Al靶27。在高频电源26上设置Ge靶28。

能够6高频电源25、26向Al靶27以及Ge靶28施加高频电力。

另一方面,经由阀29从外部向腔室22供给Ar气体与N2气体的混合气体。

此外,在基材12的下方、Al靶27的正上方以及Ge靶28的正上方,分别配置有遮挡器31~33。

能够使用上述制造装置21并通过溅射将含Ge的氮化铝压电薄膜成膜在基材12上。更具体而言,通过加热装置24加热基材12,在此状态下,边供给Ar气体与N2气体的混合气体边从高频电源25、26向Al靶27以及Ge靶28施加高频电力。由此,能够在基材12上形成含Ge的氮化铝压电薄膜。

上述基材12的加热温度不受特别限定,只要是非加热~500℃左右即可。更加优选只要形成200~450℃即可。

另外,Ar与N2的混合比虽也取决于作为目标的含Ge的氮化铝压电薄膜的组成,但只要形成流量比2:8~8:2左右即可。更进一步优选,Ar:N2的流量比为7:3~5:5的范围。由此,能够呈现更良好的压电性。

另外,针对气体压力,虽不特别地限定,但只要形成0.1Pa~0.5Pa左右即可。作为本实施方式的实施例,在以下的条件下成膜含Ge的氮化铝压电薄膜。

基材温度=400℃

Ar:N2的流量比=7:3

气体压力=0.18Pa

目标组成:Ge0.1Al0.9N

在上述条件下得到了实施例1的含Ge的氮化铝压电薄膜。压电常数d33为-5.8pC/N。即,可见能够得到压电常数d33为负值、即极化方向反转的含Ge的氮化铝压电薄膜。

与上述实施例1同样,只是使向Ge靶输入的输入电力变化,得到含Ge的氮化铝压电薄膜。结果示于图5。

由图5可见,在使向Ge靶输入的输入电力由5W变化至15W的情况下,如果向Ge靶输入的输入电力变高,则Ge的原子浓度变高,Al的原子浓度变低。另一方面,可见N的浓度恒定。因此,可见组成以Al的一部分被Ge置换的方式变化。

如上所述,可见通过使向Ge靶输入的输入电力变化,能够调整Ge的原子浓度。

此外,上述Al、Ge以及N的原子浓度通过RBS或者NRA求得。

上述RBS为卢瑟福背散射分析法(RBS)。在RBS法中,向样品照射高速的离子。入射的离子中的一部分因样品中的原子核而受到卢瑟福散射(弹性散射)。散射的离子的能量因作为对象的原子的质量以及位置而不同。能够根据该散射离子的能量和收获量得到样品的深度方向的元素组成。

另一方面,在上述NRA、即核反应分析中,通过高速离子的照射,与样品中的轻元素引起核反应。通过检测由该核反应产生的α线、γ线,能够进行轻元素的定量。

在图5的各原子浓度的测定时,通过使用高速的H离子的RBS求得上述Ge、Al以及Si的浓度。另外,通过使用高速的H离子的NRA测定N的含量浓度。

本申请的发明人使Ge浓度变化,与上述实施例1同样地制作了各种含Ge的氮化铝压电薄膜。图1是表示Ge浓度和压电常数d33之间的关系的图。

由图1可见,在Ge浓度为0、即不含Ge的氮化铝压电薄膜中,压电常数d33为约7pC/N,为正值。

可见若含有Ge,则压电常数d33迅速移至负值。由图1可见,若Ge浓度在3原子%~28原子%的范围内,则压电常数d33为负值。即,如图4所示,可见得到极化方向为与薄膜生长方向相反方向的含Ge的氮化铝压电薄膜3。由此,Ge浓度优选为3~28原子%的范围。另外,由图1可见,若Ge浓度为4~21原子%的范围,则压电常数d33的绝对值大于2pC/N,因此能够有效地提高压电特性。可见更为优选地,如果Ge浓度为5~16原子%的范围,则能够进一步有效地提高压电特性。

通过RBS/NRA分析可见若含有Ge则Ge与Al被置换,由文献(R.D.ShaNNoN,Acta CrystAllogr.,A32(1976)751.)可见,3价4配位的Al和4价4配位的Ge的离子半径均与0.39埃类似,从而容易进行置换。

另外,可见通过第一原理计算容易稳定地取得Ge为4价4配位的构造,此时的电荷补偿若通过Al缺陷进行则能够得到稳定构造,且能够与通过实验方式取得的压电常数、结晶构造非常接近。

根据这些实验数据和理论分析,可见能够稳定地实现Al缺陷的Ge掺杂那样的方法在形成N polarity的氮化铝薄膜中是有效的。

在上述第一实施方式中,如图2所示,虽使用Al靶27和Ge靶28,但也可以如图6所示的第二实施方式那样,使用GeAl合金靶42。在图6所示的制造装置41中,在腔室43内配置有高频电源44。在该高频电源44上载置有上述GeAl合金靶42。

在腔室43内配置有加热装置45、46以及遮挡器47。在遮挡器47的上方配置有基材12、12。另外,构成为经由腔室43外的阀48向腔室43内供给Ar和N2的混合气体。

如本实施方式那样,作为靶,也可以使用单个靶亦即GeAl合金靶。另外,可以在Al靶上设置Ge粒料,也可以在Al靶上开孔而埋入Ge粒料。在这样的结构中,在例如6英寸大小、8英寸大小之类的大型晶片上,能够容易且均匀地成膜含Ge的氮化铝压电薄膜。因此,能够容易地提供面积比较大的含Ge的氮化铝压电薄膜。

在第二实施方式中,通过如上所述将Ge浓度形成为上述特定的范围,能够与第一实施方式的制造方法相同地,容易地提供极化方向反转的含Ge的氮化铝压电薄膜。

在上述的专利文献1的制造方法中,难以高精度地供给微量的氧。与此相对,由上述第一实施方式以及第二实施方式可见,在本发明的氮化铝压电薄膜的制造方法中,不需要这样的微量的气体的供给之类的繁琐的工序。因此,能够容易地量产极化方向反转的含Ge的氮化铝压电薄膜。

图7是表示适当地使用本发明的含Ge的氮化铝压电薄膜的压电部件的一个构造例的局部剖切主剖视图。压电薄膜过滤器51具有基板52。在基板52设置空洞部52a。在该空洞部52a上,依次层压支承膜53、第一压电薄膜54以及第二压电薄膜55。另外,在第一压电薄膜54的下面配置有下部电极56。在第二压电薄膜55的上方设置上部电极57。在第一压电薄膜54和第二压电薄膜55之间设置电极58。而且,第一压电薄膜54的极化方向为箭头Z方向,与之相对,第二压电薄膜55的极化方向为箭头-Z方向。在得到这样的压电薄膜过滤器51时,能够将上述含Ge的氮化铝压电薄膜适当地使用为第二压电薄膜55。

作为第一压电薄膜54,只要通过溅射形成不含有Ge的氮化铝压电薄膜即可。因此,能够容易地形成极化方向不同的第一压电薄膜54、第二压电薄膜55。

图8是表示能够适当地使用本发明的含Ge的氮化铝压电薄膜的压电部件的其他的构造例的主剖视图。图8所示的音响元件61具有外壳62。外壳62具有开在下方的开口。开在下方的开口通过底板63闭合。在上述外壳62的上面设置多个放音孔62a。

另外,在外壳62内经由支承部64、65安装有层压压电元件70。层压压电元件70具有从上到下依次层压电极71、振动膜72、压电层73、电极74而成的第一层压部分以及配置在第一层压部分下方的、从上到下依次层压了电极75、压电层76、振动膜77以及电极78的第二层压部分。压电层73的极化方向与压电层76的极化方向在厚度方向上互为反向。通过使用本发明的含Ge的氮化铝压电薄膜和极化方向为薄膜生长方向的氮化铝压电薄膜作为上述压电层73、76,能够容易地制作这样的音响元件61。

此外,不限定于图7以及图8所示的构造例,本发明还能够广泛地使用于各种压电振子、压电共振子、压电促进器、压电传感器等的使用了极化方向为相反方向的压电薄膜的压电部件。

符号说明

1、101…压电部件;2…基材;3…含Ge的氮化铝压电薄膜;4…电极;12…基材;21…制造装置;22…腔室;24…加热装置;25、26…高频电源;27…Al靶;28…Ge靶;29…阀;31~33…遮挡器;41…制造装置;42…GeAl合金靶;43…腔室;44…高频电源;45、46…加热装置;47…遮挡器;48…阀;51…压电薄膜过滤器;52…基板;52a…空洞部;53…支承膜;54、55…第一、第二压电薄膜;56…下部电极;57…上部电极;58…电极;61…音响元件;62…外壳;62a…放音孔;63…底板;64、65…支承部;70…层压压电元件;71…电极;72、77…振动膜;73、76…压电层;74、75、78…电极;103…氮化铝压电薄膜。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号