首页> 中国专利> 包括生成和退火辐射引起晶体缺陷的制造半导体器件方法

包括生成和退火辐射引起晶体缺陷的制造半导体器件方法

摘要

本发明涉及包括生成和退火辐射引起晶体缺陷的制造半导体器件方法。在半导体衬底中诱导生成辅助晶体缺陷。然后在高于分解温度的温度下对半导体衬底预退火,在所述分解温度下辅助晶体缺陷转变成缺陷复合体,其可以是电惰性的。然后质子可以被注入半导体衬底中以诱导生成辐射引起的主要晶体缺陷。缺陷复合体可以增强基于辐射引起的主要晶体缺陷形成与粒子相关的掺杂剂的效率。

著录项

  • 公开/公告号CN104934319A

    专利类型发明专利

  • 公开/公告日2015-09-23

    原文格式PDF

  • 申请/专利权人 英飞凌科技股份有限公司;

    申请/专利号CN201510120441.X

  • 申请日2015-03-19

  • 分类号

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人蒋骏

  • 地址 德国瑙伊比贝尔格市坎芘昂1-12号

  • 入库时间 2023-12-18 11:00:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-29

    授权

    授权

  • 2015-10-21

    实质审查的生效 IPC(主分类):H01L21/324 申请日:20150319

    实质审查的生效

  • 2015-09-23

    公开

    公开

说明书

背景技术

照射在单晶半导体衬底上的粒子束生成辐射引起的晶体缺陷。利用非掺杂杂质原子(例如氢和/或氧)修饰的辐射引起的晶体缺陷作为掺杂中心可以是有效的。例如,在质子注入之后在270和470oC之间的温度下使硅晶体退火可以形成静止且稳定的与氢相关的施主。期望扩大用于辐射引起的掺杂中心的可能的应用范围并改善用于使用包含非掺杂原子的粒子束形成掺杂区域的方法的效率。

发明内容

根据一个实施例,一种制造半导体器件的方法包括在半导体衬底中诱导生成辅助晶体缺陷。然后在高于分解温度的温度下对半导体衬底预退火,在所述分解温度下辅助晶体缺陷转变成缺陷复合体。然后主要注入粒子被注入半导体衬底中,其中注入主要注入粒子诱导生成辐射引起的主要晶体缺陷。

根据另一实施例,半导体器件包括具有平行的第一和第二表面的半导体本体。半导体本体包含与氢相关的施主。垂直于第一表面的与氢相关的施主的浓度分布曲线在至第一表面第一距离处包括至少1E15 cm-3的最大值,并且在第一表面和该第一距离之间的间隔的至少60%上没有落在1E14 cm-3以下。

本领域技术人员在阅读了以下详细描述以及查看了附图之后将认识到附加的特征和优点。

附图说明

附图被包括用以提供对本发明的进一步理解并且被并入该说明书中和构成该说明书的一部分。这些图示出本发明的实施例并且与描述一起用来解释本发明的原理。将容易领会本发明的其它实施例和预期的优点,因为参考以下详细描述它们将变得更好理解。

图1A是用于示出在注入辅助注入粒子之后根据实施例的制造半导体器件的方法的半导体衬底的一部分的示意截面图。

图1B是在对半导体衬底预退火之后图1A的所述半导体衬底部分的示意截面图。

图1C是在注入主要注入粒子之后图1B的所述半导体衬底部分的示意截面图。

图1D是在后退火之后图1C的所述半导体衬底部分的示意截面图。

图2A是根据另一实施例的具有包括与粒子相关的掺杂剂的注入层的半导体器件的一部分的示意截面图。

图2B是示出图2A的半导体器件中的与粒子相关的掺杂剂的垂直浓度分布曲线的示意图。

图3A是示出根据另一实施例的制造半导体器件的方法的简化流程图。

图3B是示出根据另一实施例的制造半导体器件的包括后退火的另一方法的简化流程图。

具体实施方式

在下面的详细描述中,参考附图,这些附图构成了该详细描述的一部分,并且在这些附图中借助图示示出了其中可以实践本发明的特定实施例。应当理解可以利用其它实施例,并且可以在不脱离本发明的范围的情况下做出结构或逻辑改变。例如针对一个实施例示出或描述的特征可以用在其它实施例上或者结合其它实施例使用以产生另外的实施例。本发明旨在包括这种修改和变化。使用特定语言来描述实例,其不应当被理解为限制所附权利要求的范围。附图没有按比例并且仅用于说明的目的。为清楚起见,相同的元件在不同图中已经由对应的参考标记来标明,如果没有另外说明的话。

图1A-1D示出半导体衬底500中的与粒子相关的掺杂剂的形成,其中与粒子相关的掺杂剂的生成包括通过以主要注入工艺注入主要注入粒子211来诱导生成主要晶体缺陷。

半导体衬底500可以是半导体晶片,例如硅晶片、SOI(绝缘体上硅)晶片(诸如SOG(玻璃上硅)晶片)或另一单晶半导体材料的衬底,所述另一单晶半导体材料例如是碳化硅SiC、砷化镓GaAs、氮化镓GaN或另一AIIIBV半导体、锗Ge或硅锗晶体SiGe。根据一个实施例,半导体衬底500是通过切克劳斯基(Czochralski)工艺获得的硅晶片,例如m:Cz (磁性切克劳斯基)硅晶片,其中氧含量从1E17 cm-3(例如至少2E17 cm-3)到4E17 cm-3

半导体衬底500可以具有第一表面101a和与第一表面101a平行的第二表面102a。在下面,第一表面101a的法线定义垂直方向,并且与第一表面101a平行的方向是横向方向。半导体衬底500可以包括非掺杂杂质原子,例如填隙氧原子。

在半导体衬底500中,例如通过生成过剩的晶体空位的表面工艺诱导生成辅助晶体缺陷。例如,半导体衬底500可以经受在包含氮的大气中在大于1000oC的温度下以及在最大温度和800oC之间的温度范围内以大于20oC/min的冷却速率和在800oC与500oC之间的温度范围内以大于5oC/min的冷却速率的快速热退火。

根据图1A中所示的实施例,辅助晶体缺陷是由辅助注入工艺诱导的辐射引起的缺陷。包含辅助注入粒子211(诸如电子、中子、质子或例如氦离子的轻离子)的第一注入束210入射到第一表面101a上。根据一个实施例,注入束210包含处于至少2 MeV(例如至少4 MeV)的加速度能量并且处于在从 5E13到1E15 cm-2或从1E14到5E14 cm-2(例如约4E14 cm-2)的范围内的注入剂量的质子。辅助注入粒子211横穿半导体衬底500的在第一表面101a和第一粒子范围pr1之间的第一横断层(traversed layer)501,并且诱导在第一横断层501中的辐射引起的辅助晶体缺陷212的形成。

在辅助注入工艺之后,半导体衬底500包含在横断层501中的辅助晶体缺陷212以及在第一注入层511中的辅助注入粒子211。辅助晶体缺陷212的垂直浓度分布曲线212v在第一横断层501的在第一表面101a和第一注入层511之间的部分中大致恒定,可以在第一注入层511内具有浅峰值,并且可以从第二粒子范围pr1内的浅峰值下降。辅助注入粒子211的垂直浓度分布曲线211v大致为高斯分布,并且在由辅助注入粒子211的加速度能量确定的第一注入距离d1处具有最大值。

继续进行到图1B,半导体衬底500在大于辅助晶体缺陷212的分解温度TD的第一退火温度T1下被预退火。辅助晶体缺陷212可以包括核心复合体(core complexes),其在分解辅助晶体缺陷212之后可以转变(例如凝聚)为包含空位和氧VnOm的高阶晶体缺陷复合体219,由此可选地在某种程度上并入包含在半导体衬底500中的氢原子。晶体缺陷复合体219可以是电惰性的,即它们作为施主或受主不是有效的。氢原子可以使缺陷复合体稳定。对于硅衬底,第一退火温度T1是至少500oC,例如至少510oC或至少550oC。

氢原子可以是本征杂质或可以由先前的质子注入引入。假如第一注入束210不包含质子,则氢原子可以例如通过在辅助注入工艺之前、期间或之后来自氢等离子体源的内扩散被引入到半导体衬底中。

图1B示出了晶体缺陷复合体219,其可以是电惰性的并且其可以对存在于半导体衬底500中的氢原子除气。晶体缺陷复合体219可以提供比被先前注入的质子占据的更多的除气位置。游离氢原子的浓度低于预退火之前并且可以低于第一注入工艺之前。预退火可以将图1A的辅助晶体缺陷212的至少一部分或者大致将它们全部转换成晶体缺陷复合体219。预退火可以持续至少一个小时或者至少三个小时,例如至少五个小时,并且提高了下面的掺杂工艺的效率。

在图1C中所示的主要注入工艺中,第二注入束220照射半导体衬底500的第一表面101a。第二注入束220包括主要注入质子221。第二注入距离d2可以对应于图1A中的第一注入束210的第一注入距离d1,或者可以小于第一注入距离d1。

根据其它实施例,注入的主要注入质子221的垂直杂质浓度分布曲线221v在第二注入距离d2处具有最大值,该第二注入距离可以大于或小于图1A中的第一注入距离d1。在被注入的主要注入质子221横穿的第二横断层502中,主要注入质子221诱导生成辐射引起的主要晶体缺陷222。以不同注入能量和/或注入剂量的另外的注入可以跟随。

图1C示出集中在第二注入层512中的主要注入质子221,在第一表面101a和第二粒子范围pr2之间的第二横断层502中的辐射引起的主要晶体缺陷222,以及可选地通过可能在第一注入工艺期间引入的氢原子来稳定的晶体缺陷复合体219。

在低于分解温度TD的第二退火温度T2下的后退火形成在静止且稳定的辐射引起的和与空位相关的主要晶体缺陷222处局部化的与粒子相关的掺杂剂229,如图1D中所示。

与粒子相关的掺杂剂229可以是各种种类的与氢相关的施主,例如与氢相关的双施主(HDD)、与氢相关的浅施主(SHD)等等。对于硅衬底,第二退火温度在300oC和510oC之间,例如在400oC和500oC之间。根据一个实施例,第二退火温度在470oC和495oC之间并且退火持续至少三个小时,例如至少五个小时。

与氢相关的施主229主要被形成在第二注入距离d2周围的地带中,在此所注入的主要注入质子的浓度具有最大值。在第二注入层512中,主要注入质子的浓度高于第二辐射引起的与空位相关的主要晶体缺陷222的浓度。在第二注入地带512中的与粒子相关的掺杂剂229的形成主要由辐射引起的与空位相关的主要晶体缺陷222的数目给出。在质子注入的情况下,相比于氢原子可以被消耗用于形成与氢相关的施主,更多的氢原子在第二注入层512中是可用的。

在半导体衬底500中的高浓度的剩余游离氢可能以与氢相关的施主229的形成效率为代价来促进电惰性的晶体缺陷复合体的形成,使得剩余的氢抵消与氢相关的施主的形成。例如,剩余的氢可以促进与氢相关的施主转变成附加的电惰性的缺陷复合体或者可以诱导和与氢相关的施主的形成竞争的另一工艺。

代替地,包括生成辅助晶体缺陷并在分解温度TD以上对它们回火的预处理生成晶体缺陷复合体219,所述晶体缺陷复合体对游离氢原子中的一些除气并减少剩余的氢含量或者甚至形成附加的充当施主的与空位氢相关的复合体。

因此,晶体缺陷复合体219的存在提高了在后退火期间与氢相关的施主的形成效率。结果,较低的总注入剂量足以形成包含非掺杂原子的n型层。另外,可以比在没有预处理的情况下实现更高浓度的与粒子相关的掺杂剂。

缺陷复合体219还可以对半导体衬底500中存在的游离氧原子除气。例如,m:Cz硅晶片(磁性切克劳斯基硅晶片)在某种程度上包含游离填隙氧原子。在由半导体衬底500制造半导体器件期间,游离氧原子可以以一定的生成速率形成长链热氧相关的施主。晶体缺陷复合体219可以在某种程度上对填隙氧原子除气。在缺陷复合体219处对氧原子除气和与氧相关的施主的形成竞争,并因此减少了与氧相关的施主的形成。结果,可以在未用过的半导体衬底中(例如在m:Cz硅晶片中)容许较高浓度的填隙氧。例如,上述预处理可以应用于具有至少1E16 cm-3(例如至少1E17 cm-3或至少2E17 cm-3)的氧浓度的硅衬底。

在辅助注入之后以及在预退火或后退火之前或之后,可以将半导体衬底500从第二表面102减薄直到离第一表面101的目标距离td处的辅助平面,以便对完成器件的垂直掺杂剂分布曲线定形。目标距离td可以对应于图1A的第一粒子范围pr1、第二粒子范围pr2、图1A的第一注入距离d1或第二注入距离d2,或者可以小于第二注入距离d2,使得第二注入层512被大部分或完全去除。根据另一实施例,目标距离td被选择成使得高掺杂剂浓度的区域可以被形成得接近或直接邻接通过减薄工艺获得的最后的背侧表面。

图2A和2B提及半导体器件550的半导体本体100。半导体器件550可以是半导体二极管或半导体开关器件,例如IGFET(绝缘栅场效应晶体管)、IGBT(绝缘栅双极晶体管)或晶闸管。半导体本体100基于单晶半导体材料,例如硅Si、锗Ge、硅锗SiGe、碳化硅SiC、砷化镓GaS、氮化镓GaN、另一AIIIBIV化合物半导体、锗Ge或硅锗晶体SiGe。

半导体本体100可以具有第一表面101和平行于第一表面101的第二表面102,该第一表面101可以是平面的或者可以包括共面的表面部分。半导体本体100包括包含与氢相关的施主的注入层152,其中用于生成与氢相关的施主的质子注入物的注入剂量大于1E14 cm-2,例如大于4E14 cm-2。沿着垂直于第一表面101的垂直方向,与氢相关的施主的浓度在注入层152内的最大值和第一表面101与第二表面102两者之间稳定地降低。

根据一个实施例,与氢相关的施主的浓度分布曲线的最大值是至少1E15 cm-3,例如至少3E15 cm-3 或1E16 cm-3

另外的注入层151可以直接邻接注入层152,其中在注入层152中的与氢相关的施主的浓度是在另外的注入层151中的至少四倍高,例如至少十倍高。另外的注入层151的垂直延伸可以是注入层152的垂直延伸的至少两倍大。在注入层151、152中,与氢相关的施主可以添加到施主的均匀的或阶梯状的本底掺杂,例如磷P或砷As原子。

举例来说,注入层151、152可以形成漂移区和场停止层、阻挡层、复合区或注入区的组合,或其部分。

图2B示出对于至少2E14 cm-2的高注入剂量得自使用上述预处理的工艺的第一浓度分布曲线 281和针对根据在没有预处理的情况下的比较实例形成的与氢相关的施主的第二浓度分布曲线282。

常规地,在质子注入之后,在注入层152之中和周围的高氢杂质浓度局部抵消与氢相关的施主的形成。因此,在常规注入层152中,与氢相关的施主的浓度的最大值不超过1E15 cm-2。还由于较高的氢过剩,在注入层152中以及接近注入层152,与氢相关的施主的形成不如在离注入层152更大距离处有效。因此,以至少2E14 cm-2的高注入剂量,第二浓度分布曲线282示出注入表面和浓度最大值之间的最小值。对于图2B中示出的实施例,所述最小值在60 μm到70 μm的范围内,即接近质子注入的范围末端(end-of-range)周围的掺杂最大值。相比之下,由于预处理局部降低了过剩的氢使得剩余氢的抵消效果被部分地接纳,因此根据实施例得自上述预处理的第一浓度分布曲线281示出即使以至少2E14 cm-2或至少4E14 cm-2的高注入剂量也没有局部最小值。

代替地,对于至少1E15 cm-3(例如至少3E15 cm-3或根据另一实施例为1E16 cm-3)的与氢相关的施主浓度的最大值,在离第一表面101的第一距离dA处,与氢相关的施主浓度在第一表面101和第一距离dA之间的间隔的至少60%(例如至少75%)上没有落在1E14 cm-3以下,其中第一距离dA可以大于40 μm,例如大于60 μm。第一浓度分布曲线281可以在第一表面101和第一距离dA之间的间隔的至少60%上随着离第一距离dA增加的距离而稳定地降低。

根据一个实施例,第一浓度分布曲线281可以包括在第一表面101和第一距离dA之间的一个或多个另外的局部最大值,其中所述局部最大值具有低于在第一距离dA处的最大值的值。根据另一实施例,第一浓度分布曲线281随着离第一表面101减少的距离而从在第一距离dA处的最大值稳定地降低。此外,第一浓度分布曲线281可以随着离第二表面102减少的距离而从在第一距离dA处的最大值稳定地降低。

图3A提及制造半导体器件的方法。在半导体衬底中诱导生成辅助晶体缺陷(302)。在高于分解温度的温度下对半导体衬底预退火,在所述分解温度下辅助晶体缺陷转变成电惰性的晶体缺陷复合体(304)。主要注入粒子被注入半导体衬底中以诱导生成辐射引起的主要晶体缺陷(306)。后退火可以基于主要晶体缺陷和经预退火的辅助晶体缺陷来诱导生成与粒子相关的施主。

图3B的方法类似于图3A的方法,并且还包括在低于分解温度的温度下的后退火,用于基于辐射引起的主要晶体缺陷形成与氢相关的施主(308)。

虽然本文中已经示出和描述了特定实施例,但本领域普通技术人员将认识到,在不脱离本发明的范围的情况下,多种替换和/或等效实施方式可替代所示出和描述的特定实施例。本申请旨在涵盖本文中所讨论的特定实施例的任何改编或变化。因此,本发明旨在仅由权利要求及其等同物限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号