首页> 中国专利> 制造化学机械平面化(CMP)垫中的原位凹槽的方法以及新颖的CMP垫设计

制造化学机械平面化(CMP)垫中的原位凹槽的方法以及新颖的CMP垫设计

摘要

提供制造CMP垫中的原位凹槽的方法。一般地说,制造原位凹槽的方法包括以下步骤:构图硅树脂衬层(206);将所述硅树脂衬层(206)设置在模具(200)中或模具(200)上;将所述CMP垫材料添加到所述硅树脂衬层(206);以及使所述CMP垫固化。还描述了包括新颖凹槽设计的CMP垫。例如,在此描述的是包括同心圆凹槽和轴向弯曲凹槽、反向对数凹槽、重叠圆凹槽、利萨如凹槽、双螺旋凹槽以及多重重叠轴向弯曲凹槽的CMP垫。所述CMP垫可以由聚氨酯制成,并且在其中制造的凹槽可由选自硅树脂加衬、激光直写、水射流切割、3-D印刷(printing)、热压成形、真空成形、微接触印刷、热压印及其混合中的方法制造。

著录项

  • 公开/公告号CN101014446A

    专利类型发明专利

  • 公开/公告日2007-08-08

    原文格式PDF

  • 申请/专利权人 尼欧派德技术公司;

    申请/专利号CN200580024127.6

  • 申请日2005-07-15

  • 分类号B24D18/00(20060101);B29C33/40(20060101);B24D13/14(20060101);B29C33/56(20060101);B24B37/04(20060101);B29C41/02(20060101);B29C33/42(20060101);

  • 代理机构11247 北京市中咨律师事务所;

  • 代理人杨晓光;李峥

  • 地址 美国加利福尼亚州

  • 入库时间 2023-12-17 18:59:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-04

    专利权的转移 IPC(主分类):B24D18/00 登记生效日:20170718 变更前: 变更后: 申请日:20050715

    专利申请权、专利权的转移

  • 2013-04-03

    授权

    授权

  • 2007-10-03

    实质审查的生效

    实质审查的生效

  • 2007-08-08

    公开

    公开

说明书

技术领域

一般地说,这里描述的方法和设计属于用于化学机械平面化(CMP)的抛光垫领域。更具体地,这里描述的方法和设计涉及用于CMP垫的原位凹槽以及新颖的CMP垫设计。

背景技术

通常,在半导体晶片上的集成电路(IC)制造期间将CMP用于平面化单个层(例如,介电或金属层)。CMP去除晶片上不需要的IC形貌特征。例如,CMP去除金属镶嵌工艺后的金属沉积物,以及来自浅沟槽隔离步骤的过量氧化物。类似地,CMP也可用于平面化金属间电介质(IMD),或具有复杂结构,如芯片上系统(SoC)设计和具有变化的图形密度的垂直栅结构(例如,FinFET)的器件。

CMP利用一般被称作浆料的反应液体介质,以及抛光垫以提供化学和机械控制从而实现平面化。液体或抛光垫都包含纳米尺寸的无机颗粒以增强CMP工艺的化学反应性和/或机械活性。典型地该垫由能够执行包括浆料传输、在整个晶片内施加的压力分配、以及反应产物的去除这几种功能的硬质微孔聚氨酯材料构成。在CMP期间,浆料的化学相互作用在抛光表面形成化学改性层。同时,浆料中的磨料与化学改性层机械地相互作用,导致材料去除。CMP工艺中的材料去除速率与浆料的磨料浓度以及垫/浆料/晶片界面区域中的平均摩擦系数(f)有关。CMP期间的法向和剪切力以及f的范围典型地取决于垫摩擦学。近来的研究表明垫材料柔量(compliance)、垫接触面积、以及系统的润滑程度都在CMP工艺期间起作用。参见例如A.Philiposian and S.Olsen,Jpn.J.Appl.Phys.,vo1.42,pp 6371-63791;Chemical-Mechanical Planarization of Semiconductors,M.R.Oliver(Ed.),Springer Series in Material Science,vol.69,2004;以及S.Olsen,M.S.Thesis,University of Arizona,Tuscon,AZ,2002。

有效的CMP工艺不仅提供高抛光速率,而且也提供光洁(例如,没有小尺寸的粗糙)和平坦(例如,没有大尺寸的形貌)的衬底表面。认为抛光速率、光洁度、以及平坦度受到垫和浆料的组合、垫/晶片相对速度以及使衬底紧贴垫施加的法向力的控制。

两种通常发生的CMP不均匀为边缘效应和中心慢效应。当以不同速率抛光衬底边缘和衬底中心时产生边缘效应。当衬底中心处存在下抛光(under-polishing)时产生中心慢效应。这些不均匀的抛光效应降低整体平坦度。

另一通常观察到的问题与浆料传输和分配有关。在过去,抛光垫有穿孔。当压缩该垫时,这些穿孔在填充时分配浆料。参见例如J.Levert et al.,Proc.of the Internatioanal Tribology Conf.,Yokohoma,1995。由于没有方法将超量的浆料引导到最需要其的地方(即在晶片表面处),因此这种方法是无效的。目前,典型地通过异位(ex-situ)垫表面凹槽设计进行垫的宏纹理化(macro-texturing)。参见例如美国专利号5,842,910;5,921,855;5,690,540;以及T.K.Doy.et.al,J.of Electrochem.Soc.,vol.151,no.3,G196-G199,2004。这些设计包括圆形凹槽(例如,被称作“K凹槽”的同心凹槽)以及交叉阴影线(cross-hatched)图形(例如,X-Y、六角形、三角形等)。这些凹槽轮廓也可以是具有‘V’、‘U’或锯齿形截面的矩形。

发明内容

描述了制造CMP垫中的原位凹槽的方法以及新颖的凹槽设计。一般地说,制造原位凹槽的方法包括以下步骤:构图硅树脂衬层(siliconelining);在模具中或模具上设置所述硅树脂衬层;将CMP垫材料添加到所述硅树脂衬层;以及使所述CMP垫固化。在一些变型中,硅树脂衬层由硅树脂弹性体制成,并且在一些变型中,构图所述硅树脂衬层包括利用光刻或模压(embossing)构图所述硅树脂衬层的步骤。所述制造原位凹槽的方法还包括例如使用胶粘、带绕(tape)、夹紧、加压安装技术或者其混合将所述硅树脂衬层附着到所述模具。

在一些变型中,所述模具为金属模具。例如,所述模具可由选自铝、钢、超模(ultramold)材料及其混合物的材料制成。在一些变型中,除了构图所述硅树脂衬层,还构图所述模具(即,利用构图的组合)。在一些变型中,CMP垫材料包括热塑性材料。在其它变型中,CMP垫材料包括热固性材料。在一些变型中,CMP垫材料为聚氨酯。

还描述了包括新颖凹槽设计的CMP垫。例如,这里描述的是包括同心圆凹槽和轴向弯曲凹槽的CMP垫。在一些变型中,所述同心圆凹槽成组地被间隔分离。在另一些变型中,所述轴向弯曲凹槽为重叠的。在另一些变型中,所述轴向弯曲凹槽为不连续的。所述同心圆凹槽和所述轴向弯曲凹槽也可交叉。

还描述了包括反向对数(reverse logarithmic)凹槽、重叠圆凹槽、利萨如(lissajous)凹槽、双螺旋凹槽以及多重重叠轴向弯曲凹槽的CMP垫。在一些变型中,所述重叠圆凹槽为偏心的。所述CMP垫可由聚氨酯制成,并且在此制造的凹槽可由硅树脂加衬、激光直写、水射流切割(water jetcutting)、3-D印刷、热压成形、真空成形、微接触印刷、热压印(hotstamping)及其混合的方法制成。

附图说明

图1A和1B提供开槽对围绕垫/晶片区域产生的流体动力压力(P)的影响的示意图。

图2提供如何将这里描述的硅树脂衬层方法用于制造原位沟槽的截面图。

图3A-3I提供在此描述的合适凹槽设计的图示。

具体实施方式

这里描述的是用于原位CMP开槽的方法,以及新颖的凹槽设计。认为CMP垫中的凹槽可防止在垫的整个表面内被抛光的晶片的打滑;有助于提供在整个垫表面内的浆料的分配;有助于确保充足的浆料到达晶片的内部;有助于控制垫的局部硬度和柔量以控制抛光均匀性并使边缘效应最小化;并提供用于从垫表面去除抛光残余物的通道以降低缺陷。图1A和1B提供开槽对围绕垫/晶片区域产生的流体动力压力(P)的影响的示意表示。例如,图1A示出了当使用未开槽的抛光垫时晶片压力的剖面(通过对角的条纹三角区域表示)。图1B图示了如何沿凹槽释放在晶片边缘周围的压力。也就是,凹槽符合在每个凹槽间距处产生的压力并有助于沿晶片/垫区域提供均匀的浆料分配。

原位开槽的方法

通常,可使用在CMP垫上制造原位凹槽的任何适宜方法。不同于本质上主要为机械的异位开槽的当前方法,在此描述的原位方法可具有多个优点。例如,在此描述的原位开槽方法典型地较便宜、花费较少时间,并需要较少的制造步骤。另外,在此描述的方法典型地在实现复杂的凹槽设计方面更有用。最后,在此描述的原位方法典型地能够制造具有更好容差(例如,更好的凹槽深度等)的CMP垫。

在一种变型中,原位开槽的方法包括利用设置在模具内部的硅树脂衬层。该模具可由任何适合金属制成。例如,该模具可为由铝、钢、超模材料(例如,具有用于模制精细部件的“超”光滑边缘和“超”高容差的金属/金属合金)及其混合物等制成的金属模具。该模具可为任何适合的尺寸,并且该模具的尺寸典型地取决于将要制造的CMP垫的尺寸。而垫的尺寸本身又典型地取决于将要抛光的晶片的尺寸。例如,用于抛光4、6、8或12英寸晶片的CMP垫的示例性尺寸可分别为12、20.5、24.6或30.5英寸。

硅树脂衬层典型地由硅树脂弹性体或硅树脂聚合物制成,但可使用任何适合的硅树脂衬层。然后典型地将硅树脂衬层模压或蚀刻出与需要的凹槽图形或设计互补的图形。然后将衬层胶粘或附着到模具或保留在模具中。应注意,也可在构图前将衬层设置在模具中。利用光刻技术将图形蚀刻到硅树脂衬层中可有助于提供凹槽尺寸的更好的精度。参见例如C.Dekker,Steriolithography tooling for silicon molding,Advanced Materials&Processes,vol.161(1),pp59-61,Jan.2003;以及D.Smock,Modern Plastics,vol.75(4),pp64-65,April1998,在此引入其全部内容作为参考。例如,可获得微米到亚微米范围的凹槽。也可相对容易地获得mm范围的大尺寸。以这种方式,硅树脂衬层用作“模制图形”。但是,在一些变型中,用互补凹槽设计构图模具。以这种方式,可利用模具和衬层或者模具自身来制造CMP垫凹槽设计。

图2提供在此描述的示例性硅树脂内衬模具(200)的截面视图。如所示,具有上模具板(202)、下模具板(204)和硅树脂衬层(206)。硅树脂衬层(206)具有在其中模压或蚀刻出的图形(208)。应理解,虽然在图2中沿上模具板(202)描绘了硅树脂衬层(206),但这不是必须的。实际上,硅树脂衬层(206)也可附着到下模具板(204)或保留在下模具板(204)中。可使用适合的方法将硅树脂衬层(206)附着到模具板或保留在模具板中。例如,可将硅树脂衬层胶粘、带绕、夹紧、加压安装或附着到模具板或保留在模具板中。

利用该方法,CMP垫由热塑性或热固性材料等形成。在热塑性材料的情况下,典型地使熔体形成并注入到硅树脂内衬模具中。在热固性材料的情况下,典型地将反应混合物装入硅树脂内衬模具中。可以在一个步骤,或两个步骤,或更多步骤中将该反应混合物添加到模具中。但是,无论使用哪种材料,典型地在从模具中取出之前,通过使垫材料固化(cure)、冷却,使垫获得其最终的形状,或使垫形成为固体。在一种变型中,材料是聚氨酯,并且制造聚氨酯垫。例如,可以使聚氨酯小球熔化并设置到硅树脂内衬模具中。如上所述将硅树脂内衬模具蚀刻出需要的垫图形。使聚氨酯冷却,然后从模具中取出。于是垫具有与硅树脂内衬模具的图形相对应的图形。

利用该硅树脂衬层方法制造原位凹槽有多个潜在优点。例如,由于在断裂时或存在任何磨损或撕裂时可以容易地替换硅树脂衬层,因此其可提供长寿命的模具,并且硅树脂衬层自身典型地具有很长的寿命。类似地,与其中雕刻(engrave)有图形的模具相比,更容易从硅树脂内衬模具去除垫。因此,利用硅树脂内衬模具制造的凹槽可以更精确,并且可以使在去除期间对垫的损伤最小化。以类似的方式,可以更好地控制并更好地限定利用硅树脂内衬模具制造的凹槽尺寸。例如,可获得非常小的尺寸(例如,在微米到亚微米范围中的横向和水平凹槽)。在用于特定目的如低K电介质、Cu去除、STI、SoC等的垫中,凹槽尺寸的更好地控制和更好地限定特别重要。

新颖的凹槽设计

这里也描述新颖的凹槽设计。这些新颖的凹槽设计基于流动显示研究而极大地发展。这些研究有助于识别垫顶上的浆料的流动图形。以这种方式,计算凹槽希望的轨迹。在较小半径值处(即在垫的内部附近),将凹槽设计为具有同心圆凹槽以遵循识别的流动图形。在较大半径值处(即在垫的外部附近),将凹槽设计为减小流动,例如,通过设计切线凹槽并去除同心圆凹槽。典型的凹槽宽度范围为约50到约500微米,而典型的凹槽深度范围为约100到约1000微米。

图3A-3I提供在此描述的合适凹槽设计的示例。例如,图3A所示为具有反向对数凹槽的CMP垫。图3B提供其中凹槽为重叠圆凹槽的新颖凹槽设计的的另一图示。虽然图3B中示出的凹槽为偏心的,它们不必是偏心的。图3C提供其中设计包括双螺旋凹槽的新颖凹槽设计的示例。图3D示出利萨如凹槽设计,并且图3E到图3G示出具有同心圆凹槽和轴向凹槽的变型。如其中所示,在一些变型中,如在图3G中,同心圆凹槽为成组地间隔分离。类似地,在一些变型中,如图3F和3G所示,轴向弯曲凹槽为重叠的。

图3H示出具有多重重叠轴向弯曲凹槽的设计。该设计对于软抛光尤其有用。图3I示出包括同心圆凹槽和轴向弯曲凹槽的又一设计,其中轴向弯曲凹槽为不连续的。这种变型对于降低浆料损耗特别有用。

可以通过任何合适的方法制造这些新颖的凹槽设计。例如,它们可以利用上述原位方法制成,或者利用异位或机械方法如激光直写或切割、水射流切割、3-D印刷、热压成形和真空成形、微接触成形、热压或印刷等制成。也可根据可实用的任何合适或希望尺寸确定垫的尺寸或缩放垫。如上描述,典型地基于将要抛光的晶片的尺寸缩放垫。示例性尺寸已在上面描述。

A.激光直写(激光切割)

可以将激光直写或切割用于制造在此描述的新颖凹槽设计。激光切割机典型地由安装在机械控制的定位机构上的面向下的激光器构成。将材料例如塑料的薄片设置在激光器机构的工作区下方。当激光器在垫表面上方来回扫描时,激光在激光命中表面的点处使材料汽化,形成小通道或腔。形成的凹槽/切割典型地是精确和精密的,并且不需要表面抛光。典型地,可将任何图形的开槽编程到激光切割机中。可在J.Kim et al,J.LaserApplications,vol.15(4),pp255-260,Nov.2003中找到更多关于激光直写的信息,在此引入其全部内容作为参考。

B.水射流切割

也可将水射流切割用于制造在此描述的新颖凹槽设计。该工艺利用增压水(例如,高达每平方英寸60,000磅)的射流而在垫中制造凹槽。通常,将水与磨料类石榴石混合,该磨料类石榴石有利于更好的容差和更好的边缘光洁度。为获得希望图形的开槽,典型地预先编程(例如,使用计算机)水射流,以遵循希望的几何路径。在J.P.Duarte et al,Abrasive waterjet,Rivista De Metalurgica,vol.34(2),pp217-219,Mar-April1998中可找到对水射流切割的补充描述,在此引入其全部内容作为参考。

C.3-D印刷

三维印刷(或3-D印刷)是可用于制造在此描述的新颖凹槽设计的另一工艺。在3-D印刷中,部件按层设置。首先制作所需部件的计算机(CAD)模型,然后分层(slicing)算法映射用于每层的信息。每层从粉末层表面之上分散的薄的粉末分布开始。然后选定的粘结剂材料选择地接合将要形成目标处的颗粒。然后降低支撑粉末层和执行中的部件(part-in-progress)的活塞,以形成下一个粉末层。在每层之后,重复相同的工艺,随后进行最后的热处理以形成部件。由于3-D印刷可以实现对材料组分、微结构和表面纹理的局部控制,因此采用这种方法可获得许多新颖(且以前不能得到的)凹槽几何形状。在Anon et al,3-D printing speeds prototype dev.,Molding Systems,vol.56(5),pp40-41,1998中,可发现关于3-D印刷的更多信息,在此引入其全部内容作为参考。

D.热压成形和真空成形

可用于制造这里描述的新颖凹槽设计的其它工艺是热压成形和真空成形。典型地,这些工艺仅用于热塑性材料。在热压成形中,在使用真空压和机械压的加热后,使平板塑料片与模具接触。热压成形技术典型地制造在凹槽设计中具有良好的容差、严格的性能规格和分明的细节(sharpdetail)的垫。实际上,热压成形的垫通常可与注模件相比,有时甚至在质量上优于注模件,同时成本更低。在M.Heckele et al.,Rev.on micromolding of thermoplastic polymers.J.micromechanics andmicroengineering,vol.14(3),即R1-R14,Mar.2004中,可发现关于热压成形的更多信息,在此引入其全部内容作为参考。

真空成形通过将受热塑料负压吸引到模具上而将塑料片模制为希望形状。真空成形可用于模制特定厚度的塑料,例如5mm。利用真空模制可以相对容易地获得相当复杂的模制以及由此复杂的凹槽图形。

E.微接触印刷

利用作为高分辨率印刷技术的微接触印刷(μCP),可在CMP垫的顶上模压/印刷凹槽。有时这可以称为“软光刻”。该方法利用弹性体印模将图形转移到CMP垫上。该方法对于可用作凹槽的微结构的形成和制造是方便、低成本、非光刻方法。这些方法可用于产生具有纳米和微米(例如,0.1到1微米)范围的特征尺寸的图形和结构。

F.热压印、印刷

热压印也可用于制造在在此描述的新颖的凹槽设计。在该工艺中,利用硬底版(master)(例如,这样的金属或其它材料的片,其具有模压在其中的图形,可经受高温,并具有充分的硬度以当聚合物垫被压到硬底版中时使聚合物垫变成凹凸不平的),可以热模压热塑性聚合物。当将聚合物加热到粘稠状态时,其可在压力下成形。在符合压印形状后,可通过在玻璃转化温度以下冷却来使其硬化。通过改变底版印模上的初始图形,可以获得不同类型的开槽图形。另外,该方法允许产生纳米结构(例如,通过制造具有纳米凸纹结构的印模),这些纳米结构可利用热塑性材料的模制在大表面上被重复。这种纳米结构可用于在对多种CMP工艺有用的这些材料上提供局部平整(grading)/开槽。W.Spalte,Hot-stamping forsurface-treatment of plastics,Kunsstoffe-German Plastics,vol.76(12),pp1196-1199,Dec.1986提供了关于热压印的更多信息,在此引入其全部内容作为参考。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号