首页> 中国专利> 光掩模制造方法、器件制造方法及光掩模监测方法

光掩模制造方法、器件制造方法及光掩模监测方法

摘要

本发明公开光掩模制造方法、器件制造方法及光掩模监测方法。其中在衬底(1)上形成两层或更多层金属层(2,3),并在这两层或更多层金属层(2,3)中除了最下方金属层(2)之外的一层或多层金属层上形成主图案(5)和监测图案(6)。然后,测量监测图案(6),并在测量后去除监测图案(6)。之后,在最下方金属层(2)上形成主图案(5)以制成由两层或更多层金属层(2,3)形成的光掩模。

著录项

  • 公开/公告号CN1983025A

    专利类型发明专利

  • 公开/公告日2007-06-20

    原文格式PDF

  • 申请/专利权人 富士通株式会社;

    申请/专利号CN200610073621.8

  • 发明设计人 细野浩司;佐藤由博;

    申请日2006-04-13

  • 分类号G03F1/14;G03F7/20;G03F7/09;H01L21/027;

  • 代理机构隆天国际知识产权代理有限公司;

  • 代理人王玉双

  • 地址 日本神奈川县

  • 入库时间 2023-12-17 18:42:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-06-04

    未缴年费专利权终止 IPC(主分类):G03F1/14 授权公告日:20110727 终止日期:20130413 申请日:20060413

    专利权的终止

  • 2011-07-27

    授权

    授权

  • 2008-12-03

    专利申请权、专利权的转移(专利申请权的转移) 变更前: 变更后: 登记生效日:20081107 申请日:20060413

    专利申请权、专利权的转移(专利申请权的转移)

  • 2007-08-15

    实质审查的生效

    实质审查的生效

  • 2007-06-20

    公开

    公开

说明书

相关申请的参照

本申请基于并要求2005年12月14日申请的日本专利申请No.2005-360526的优先权的权益,在此通过参考援引其全部内容。

技术领域

本发明涉及一种光掩模制造方法、器件制造方法及光掩模监测方法,其适用于在制造诸如半导体器件、磁器件等之类的各种固态器件时形成(精细)图案。

背景技术

近年来,在LSI(大规模集成电路)的制造过程中需要形成非常精细的图案。

为此,在将精细电路图案转移到晶片(半导体衬底)的曝光步骤中,采用的光掩模(相移掩模)具有改变曝光所用的光的相位从而提高对比度的功能。特别地,为易于制造,广泛采用半色调(halftone)式相移掩模。

例如,如图7(F)所示,通过在诸如合成石英衬底之类的透明衬底1上依次层叠半透明半色调相移层2和遮光层3来形成半色调式相移掩模。

例如,如图6所示,半色调式相移掩模包括电路图案区(掩模图案区)8,在该电路图案区8上形成待转移到半导体芯片的电路图案(主图案)。在电路图案区8中,去除遮光层3,并按照电路图案去除半色调相移层2,以露出透明衬底1,由此形成电路图案。

在利用以如上所述的方式形成的半色调式相移掩模进行曝光时,在露出透明衬底1的区域中,来自照明系统的光按原样发射出。另一方面,在露出半色调相移层2的另一区域中,来自照明系统的光在其相位偏移180度之后发射出。

同时,遮光层3保留在电路图案区8外部的半色调式相移掩模的区域中。由此,当电路图案转移到晶片上时,可防止在相邻的电路图案区(未示出)出现多次曝光。

请注意,在图6中,标号81表示用于识别掩模的条形码图案,标号82表示用于识别掩模的编号图案,标号83表示用于曝光设备进行位置对准的基准图案。

附带提一下,在如上所述的这种光掩模中,确保并管理掩模图案的精度尤为重要。作为光掩模的精度确保方法,可采用位置精度的确保方法和尺寸精度的确保方法。

在此,通常通过根据实际需要在有效转移区的内部和外部布局监测图案、并测量这些监测图案来实现精度的确保和管理。请注意,例如在日本特开No.2002-107911中公开了一种图案形成方法。

优选地,从正确地测量光掩模的精度的观点来看,可在适当的位置设置适用于确保和管理精度的简单图形图案作为监测图案。

在如上所述的半色调式相移掩模中,如图6所示,在包含电路图案区8的期望有效转移区7(在图6中,由虚线包围的区域)外部的区域中,形成用于确保掩模图案的位置精度的监测图案6A和用于确保掩模图案的尺寸精度的监测图案6B,作为掩模图案6。

以如下方式制造包含如上所述的监测图案(6A、6B)的这种半色调式相移掩模。

首先,如图7(A)所示,在透明衬底1上层叠半色调相移层2和遮光层3。

然后,如图7(A)所示,在遮光层3上形成第一抗蚀层4,并且如图7(B)所示,通过对第一抗蚀层4执行包含曝光(制图)、PEB(曝光后烘烤)和显影的处理,形成电路图案5和监测图案6(用于确保位置精度的监测图案6A和用于确保尺寸精度的监测图案6B)作为第一抗蚀图案4p。

接着,如图7(C)所示,利用其上具有第一抗蚀图案4p的第一抗蚀层4作为掩模来蚀刻遮光层3,以在遮光层3上形成电路图案5和监测图案6(用于确保位置精度的监测图案6A和用于确保尺寸精度的监测图案6B)作为遮光图案3p。其后,去除第一抗蚀层4。

然后,如图7(D)所示,利用其上形成有遮光图案3p的遮光层3作为掩模来蚀刻半色调相移层2,以在半色调相移层2上形成电路图案5和监测图案6。

其后,如图7(E)所示,在遮光层3上形成第二抗蚀层4A,并且通过对第二抗蚀层4A执行包括曝光(制图)、PEB和显影的处理,形成第二抗蚀图案4Ap,该第二抗蚀图案4Ap用于形成包含电路图案区8(参见图6)的期望有效转移区(扫描区)7(参见图6)。然后,如图7(F)所示,利用其上具有第二抗蚀图案4Ap的第二抗蚀层4A作为掩模,选择性地蚀刻遮光层3。之后,去除第二抗蚀层4A。由此完成半色调式相移掩模(光掩模)。

然后,在完成半色调式相移掩模的状态下,测量监测图案6(用于确保位置精度的监测图案6A和用于确保尺寸精度的监测图案6B)。

以这种方式,在制造半色调式相移掩模的情况下,在完成半色调式相移掩模的状态下执行监测图案6的测量,并执行掩模图案精度的确保和管理。

但是近年来,在用于形成细微图案的光掩模中,非常难以在有效转移区7内自由地布局监测图案6。

例如,如果在用于孔(HOLE)的光掩模的有效转移区7内布局由图6中的标号6A表示的、用于确保位置精度的线(LINE)式监测图案,则由于适宜孔图案的转移条件与适宜线图案的转移条件互不相同,监测图案有时会成为晶片工艺中灰尘的产生源。因此,难以在有效转移区7内自由地布局监测图案6A。

此外,鉴于类似的原因,在有效转移区7内同样难以自由地布局用于确保尺寸精度的、均由不同线宽的多条线形成的监测图案6B。

因此,在有效转移区7内布局监测图案6A和6B的情况下,图案形状复杂或者图案线宽受限。有时还需要OPC(光学邻近校正)。

另一方面,在不能在有效转移区7内布局监测图案6A和6B的情况下,如同在如上所述的半色调式相移掩模(参见图6)的情况下一样,在有效转移区7外部布局监测图案6A和6B。

在这种情况下,在制造光掩模时采用监测图案6A和6B进行精度的确保和管理,由于确保的有效性随着距电路图案区(芯片区)8的距离的增大而减小,因此需要尽可能靠近电路图案区(芯片区)8来布局监测图案6A和6B。

但是,如果将监测图案6A和6B靠近芯片区布局,则在晶片工艺中存在这样的可能性,即,监测图案6A和6B可能会由于向外展开(flare)而转移到晶片。

以这种方式,监测图案6A和6B的设置会受到各种限制。

结果,例如,如果用于确保位置精度的监测图案不能布局在有效转移区7内或其附近,则存在这样的可能性,即,在确保位置精度方面的可靠性下降。此外,如果不能提供具有管理光掩模精度所需的各种线宽的线作为用于确保尺寸精度的监测图案,则不能获得各种线宽的线的尺寸测量结果,因此存在这样的可能性,即,在确保尺寸精度方面的可靠性下降。此外,由于监测图案的线宽变小,则存在这样的可能性,即,不能充分发挥测量仪器最初具备的再现性,由此可能会降低测量中的再现性。

发明内容

鉴于上述已有技术的缺陷提出本发明。本发明提供一种光掩模制造方法、器件制造方法以及光掩模监测方法,其中能够自由地布局确保和/或管理光掩模的精度所需的图案。

根据本发明的一个方案,提供一种光掩模制造方法,其包括如下步骤:在衬底上形成两层或更多层金属层;在所述两层或更多层金属层中除了最下方金属层之外的一层或多层金属层上,形成主图案和监测图案;测量监测图案;以及在测量后去除监测图案,并在最下方金属层上形成主图案,以制成由两层或更多层金属层形成的光掩模。

根据本发明的另一方案,提供一种器件制造方法,其包括如下步骤:通过如上所述的光掩模制造方法制造光掩模;以及利用该光掩模进行图案转移。

根据本发明的又一方案,提供一种光掩模监测方法,其包括如下步骤:在衬底上形成两层或更多层金属层;在所述两层或更多层金属层中除了最下方金属层之外的一层或多层金属层上,形成主图案和监测图案,其中在该最下方金属层上将形成掩模图案;以及测量监测图案。

利用所述的光掩模制造方法和光掩模监测方法,消除了将监测图案留在待最终制造的光掩模上的必要性。因此,具有这样的优点,即,可以自由地布局确保或管理光掩模的精度所需的图案,而无需考虑在监测图案留在光掩模上的情况下由于向外展开等影响而带来的麻烦。由此,能够充分地保证在确保光掩模精度方面的可靠性和监测仪的可靠性。结果,能够实现其可靠度高于传统光掩模的可靠度、由此具有充分高的精度的光掩模。

另一方面,利用所述的器件制造方法,由于采用了由本发明的光掩模制造方法制造的光掩模(从该光掩模中去除了监测图案),因此消除了监测图案由于向外展开而转移到晶片的可能性。因此,存在这样的优点,即,避免了由留在光掩模上的监测图案的转移带来麻烦。

从结合附图的下述描述和所附的权利要求书中,本发明的上述和其他目的、特点和优点将变得很清楚,其中在附图中,由相似的标号表示相同的部分或元件。

附图说明

图1(A)至1(G)是示出根据本发明的第一实施例提供的光掩模制造方法的示意截面图;

图2是示出在根据本发明的第一实施例提供的光掩模制造方法中形成监测图案的状态的示意顶视平面图;

图3是示出由根据本发明的第一实施例提供的光掩模制造方法制造的光掩模的示意顶视平面图;

图4(A)至4(L)是示出根据本发明的第一实施例提供的器件制造方法的示意截面图;

图5(A)至5(H)是示出根据本发明的第二实施例提供的光掩模制造方法的示意截面图;

图6是示出传统监测图案布局的实例的示意顶视平面图;以及

图7(A)至7(F)是示出传统半色调式相移掩模制造方法的示意截面图。

具体实施方式

下面参照附图描述根据本发明的实施例提供的光掩模制造方法、器件制造方法及光掩模监测方法。

第一实施例

首先,参照图1(A)至1(G)、2、3以及4(A)至4(L),描述根据本发明的第一实施例提供的光掩模制造方法和器件制造方法。

本发明的光掩模制造方法用于制造例如半色调式(HT式)相移光掩模。

在根据本实施例提供的光掩模制造方法中,在光掩模制造工艺期间(非最后步骤)(halfway)测量用于确保和管理光掩模的精度的监测图案,并在测量之后去除监测图案。

下面参照图1(A)至1(G),采用P型半色调相移光掩模(P型光掩模)作为实例,描述根据本实施例提供的光掩模制造方法。

首先,如图1(A)所示,在例如由合成石英形成的透明衬底1上依次层叠例如由MoSiON膜形成的半色调相移层(半透明膜)2和例如由铬与氧化铬的层叠膜形成的遮光层3。

然后,如图1(A)所示,例如通过旋涂法在遮光层3上涂敷抗蚀剂,形成第一抗蚀层4。在本实施例中,为了制造P型半色调相移光掩模,形成P型抗蚀层作为首先要形成的第一抗蚀层4。

然后,如图1(B)所示,通过对第一抗蚀层4执行包括曝光(制图)、PEB(曝光后烘烤)和显影的处理,形成主图案(电路图案)5和监测图案(用于确保位置精度的监测图案和用于确保尺寸精度的监测图案)6作为第一抗蚀图案(这里为P型抗蚀图案)4p。请注意,依据所使用的抗蚀剂,可以不执行PEB工艺。

其后,如图1(C)所示,利用第一抗蚀图案4p作为蚀刻掩模,选择性地蚀刻遮光层3,以形成主图案5和监测图案6作为遮光图案3p,然后去除第一抗蚀层4。

在本实施例中,如图2的示意顶视平面图所示,在有效转移区7内布局用于确保位置精度的监测图案6A和用于确保尺寸精度的监测图案6B作为监测图案6。请注意,监测图案6不限于用于确保主图案5的精度(位置精度或尺寸精度)所用的那些监测图案,而是也可以用于管理光掩模。

然后在这种状态下,测量监测图案6(6A、6B)。

在测量监测图案6之后,如图1(D)所示,通过向遮光层3涂敷抗蚀剂来形成第二抗蚀层4A。然后,通过在第二抗蚀层4A上绘制主图案5并将主图案5显影,形成第二抗蚀图案(这里为P型抗蚀图案)4Ap。请注意,依据所使用的抗蚀剂,可执行PEB。

请注意,通过在第二抗蚀层4A上绘制主图案5并将其显影,在遮光层3上形成的主图案5的边缘与在第二抗蚀层4A上形成的第二抗蚀图案4Ap的边缘相互对准。但是,主图案5不必总是绘制或显影在第二抗蚀层4A上,第二抗蚀层4A至少可以形成为覆盖监测图案6。因此,在此步骤中,不必使用具有较高绘制精度的制图设备。

然后,如图1(E)所示,利用第二抗蚀层4A(或未被第二抗蚀层4A覆盖的、露出的遮光层3)作为蚀刻掩模,选择性地蚀刻半色调相移层2,从而在半色调相移层2上形成主图案5。其后,去除第二抗蚀层4A。

此时,由于形成在遮光层3上的监测图案6完全被第二抗蚀层4A覆盖,则其上形成监测图案6的半色调相移层2的那部分保持不被蚀刻。

之后,如图1(F)所示,通过向遮光层3涂敷抗蚀剂形成第三抗蚀层4B。然后,通过对电路图案区8的整个表面(face)执行包括曝光(制图)和显影的处理,形成第三抗蚀图案4Bp。请注意,依据所使用的抗蚀剂,可执行PEB。

然后,利用第三抗蚀层4B(第三抗蚀图案4Bp)作为蚀刻掩模,选择性地蚀刻遮光层3。之后,去除第三抗蚀层4B。由此,完成如图1(G)所示的半色调式相移掩模(光掩模)9。

这里请注意,尽管主要描述了主图案5和监测图案6,但是形成为光透射部分的用于识别掩模的条形码图案81、用于识别掩模的编号图案82以及用于晶片曝光设备的基准图案83通过与生成主图案5的那些步骤相似的步骤形成。

在本实施例中,制造如图3所示的这种光掩模9。特别地,根据本实施例提供的光掩模9以监测图案6未形成在有效转移区7内的方式制造。

以这种方式,在该光掩模制造方法中,在衬底1上形成两层或更多层金属层2、3。然后,在所述两层或更多层金属层2、3中除了最低层2之外的一层或多层金属层3上,形成主图案5和监测图案6(用于确保位置精度的监测图案6A以及用于确保尺寸精度的监测图案6B)。因此,除了最低层2之外的一层或多层金属层3由允许选择性地蚀刻的材料形成。然后,在此状态下,测量监测图案6。在测量之后,去除监测图案6,并在最低层的金属层2上形成主图案5。由此,制造由两层或更多层金属层2、3形成的光掩模。

由于监测图案6被去除而不保留在最终制成的光掩模9上,用于确保和管理光掩模9的精度所需的监测图案6能够自由地布局在有效转移区7内,而无需考虑在监测图案6留在光掩模9上的情况下由于向外展开等影响而带来的麻烦。

下面描述在如上所述的光掩模制造工艺期间(非最后步骤)测量监测图案6的原因。

如在前面的背景技术部分所描述的,通常都是在最低层的金属层(金属膜)2被蚀刻以形成图案之后的最后步骤测量并监测图案6。但是,在最初,为了测量并监测用于确保位置精度的监测图案6A,可将图案形成为台阶的形式。相应地,最后步骤中监测图案6(用于确保位置精度的监测图案6A)的测量就不必执行。

此外,在利用抗蚀层作为掩模来蚀刻最高层的金属膜时的偏置精度(bias accuracy)是决定CD(临界尺寸)特性的主要因素。例如,在如图1(A)至1(G)所示的这种半色调式相移掩模中,在由图1(A)至1(G)中的标号3表示的遮光层被蚀刻时的偏置精度尤为重要。

在利用抗蚀层作为掩模对金属膜进行蚀刻的情况下,蚀刻偏差与蚀刻金属膜时抗蚀剂的回退量(regression amount)密切相关。此外,还存在这样的可能性,即,抗蚀剂的回退量可能依据抗蚀剂的状态或蚀刻设备的状态而变化。传统上,测量完成后光掩模的监测图案(用于确保尺寸精度的监测图案6B)。但是,通过在利用抗蚀膜作为掩模蚀刻金属膜之后(例如参见图1(C))测量监测图案6,相比传统的测量方法,能够直接监测利用抗蚀膜作为掩模时的金属膜的尺寸精度。

以这种方式,利用本实施例的光掩模制造方法,监测图案6无需保留在最终制成的光掩模9上。因此,具有这样的优点,即,用于确保和管理光掩模的精度所需的图案能够自由地布局,而无需考虑在监测图案留在光掩模上的情况下由于向外展开等影响而带来的麻烦。由此,能够充分地保证在确保光掩模精度方面的可靠性和用于管理例如掩模趋向(tendency)等的监测仪的可靠性。结果,能够实现其可靠度高于传统光掩模的可靠度、且具有充分高的精度的光掩模。

请注意,在本发明光掩模制造方法中,在与传统光掩模制造方法相比时,另外需要形成第二抗蚀图案的步骤。但是,本发明的制造方法的基本制造工艺基本上与传统的半色调式相移掩模制造方法的工艺相同。因此,本发明还具有这样的优点,即通常使用的制造设备可以按原样使用。

请注意,尽管在上述实施例中,在蚀刻遮光层3并去除抗蚀剂4之后测量监测图案6,但是监测图案6的测量时机不限于此。例如,可以在蚀刻半色调相移层2并去除抗蚀剂4A之后测量监测图案6。

下面,参照图4(A)至4(L)描述根据本实施例提供的器件制造方法。

本发明的器件制造方法包括如下步骤:通过如上所述的光掩模制造方法制造光掩模;利用光掩模进行图案转移,以将其转移到晶片上(曝光步骤)。

下面具体描述器件制造方法。

首先,如图4(A)所示,例如通过STI(浅沟槽隔离)方法在硅衬底(晶片)10上形成元件隔离区12。请注意,在图4(A)中,左侧器件区被确定为待形成n型晶体管的区域,而右侧器件区被确定为待形成p型晶体管的区域。

然后,如图4(B)所示,例如通过热氧化方法在由器件隔离区12限定的器件区上形成牺牲氧化膜14。然后,通过光刻技术形成光致抗蚀剂膜16,使得露出n型晶体管形成区而覆盖p型晶体管区。此外,利用光致抗蚀剂膜16作为掩模进行离子注入,以在n型晶体管形成区的硅衬底10中形成p型杂质扩散区18、20和22。

这里,例如通过在60keV的加速能量、1×1013cm-2的剂量的条件下进行铟离子(In+)的离子注入,形成p型杂质扩散区18。

例如通过在180keV的加速能量、3×1013cm-2的剂量的条件下进行铟离子(In+)的离子注入,形成p型杂质扩散区20。

例如通过在150keV的加速能量、3×1013cm-2的剂量的条件下进行硼离子(B+)的离子注入,形成p型杂质扩散区22。

然后,如图4(C)所示,通过光刻技术形成光致抗蚀剂膜24,使得露出p型晶体管形成区而覆盖n型晶体管形成区。然后,利用光致抗蚀剂膜24作为掩模进行离子注入,以在p型晶体管形成区的硅衬底10中形成n型杂质扩散区26、28和30。

这里,例如通过在100keV的加速能量、5×1012cm-2的剂量的条件下进行砷离子(As+)的离子注入,形成n型杂质扩散区26。

例如通过在150keV的加速能量、3×1013cm-2的剂量的条件下进行砷离子(As+)的离子注入,形成n型杂质扩散区28。

例如通过在300keV的加速能量、3×1013cm-2的剂量的条件下进行磷离子(P+)的离子注入,形成n型杂质扩散区30。

之后,利用例如氟酸类型的水溶液进行湿蚀刻,去除牺牲氧化膜14。然后,如图4(D)所示,由于例如通过热氧化方法去除了牺牲氧化膜14,而在露出的器件区上形成由例如1nm膜厚的二氧化硅膜形成的栅极绝缘膜32。

然后,例如通过CVD(化学气相沉积)方法在栅极绝缘膜32上沉积例如100nm膜厚的多晶硅膜(未示出)。然后,通过光刻技术和干蚀刻将多晶硅膜图案化,以形成由多晶硅膜制成的栅极34n和34p,如图4(D)所示。

这里,栅极34n是n型晶体管的栅极,而栅极34p是p型晶体管的栅极。

然后,如图4(E)所示,通过光刻技术形成光致抗蚀剂膜36,使得露出包含栅极34n的n型晶体管形成区,而覆盖包含栅极34p的p型晶体管形成区。然后,利用光致抗蚀剂膜36和栅极34n作为掩模进行离子注入,以在栅极34的相对侧的硅衬底10中形成n型杂质扩散区38,作为n型晶体管的延伸区。

例如通过在2keV的加速能量、1×1015cm-2的剂量的条件下进行砷离子(As+)的离子注入,形成n型杂质扩散区38。此外,如图4(E)所示,利用光致抗蚀剂膜36和栅极34n作为掩模进行离子注入,以在n型晶体管形成区内形成p型袋区40。

例如通过在50keV的加速能量、2×1013cm-2的剂量、相对于衬底的法线呈25度倾斜角的条件下进行铟离子(In+)的离子注入,形成p型袋区40。

然后,如图4(F)所示,通过光刻技术形成光致抗蚀剂膜42,使得露出p型晶体管形成区而覆盖n型晶体管形成区。然后,利用光致抗蚀剂膜42和栅极34p作为掩模进行离子注入,以在栅极34p的相对侧的硅衬底10中形成p型杂质扩散区44,作为p型晶体管的延伸区。

例如通过在0.5keV的加速能量、1×1015cm-2的剂量的条件下进行硼离子(B+)的离子注入,形成p型杂质扩散区44。此外,如图4(F)所示,利用光致抗蚀剂膜42和栅极34p作为掩模进行离子注入,以在p型晶体管形成区内形成n型袋区46。

例如通过在50keV的加速能量、2×1013cm-2的剂量、相对于衬底的法线呈25度倾斜角的条件下进行砷离子(As+)的离子注入,形成n型袋区46。

然后,如图4(G)所示,例如通过CVD方法沉积例如100nm膜厚的二氧化硅膜,之后通过干蚀刻工艺来回蚀刻二氧化硅膜,以在栅极34n和34p的侧壁上形成侧壁绝缘膜48。

接着,如图4(H)所示,通过光刻技术形成光致抗蚀剂膜50,使得露出n型晶体管形成区,而覆盖p型晶体管形成区。然后,利用光致抗蚀剂膜50、栅极34n和侧壁绝缘膜48作为掩模进行离子注入,以在栅极34n的相对侧上的硅衬底10中形成n型杂质扩散区52。

例如通过在20keV的加速能量、5×1015cm-2的剂量的条件下进行磷离子(P+)的离子注入,形成n型杂质扩散区52。

之后,如图4(I)所示,通过光刻技术形成光致抗蚀剂膜54,使得露出p型晶体管形成区而覆盖n型晶体管形成区。然后,利用光致抗蚀剂膜54、栅极34p和侧壁绝缘膜48作为掩模进行离子注入,以在栅极34p的相对侧上的硅衬底10中形成p型杂质区56。

例如通过在5keV的加速能量、5×1015cm-2的剂量的条件下进行硼离子(B+)的离子注入,形成p型杂质区56。

然后,例如在1000℃进行短时间段(3秒)的热处理,以激活注入的杂质。由此,在n型晶体管形成区内形成包含p型杂质扩散区18、20、22的p型阱58和包含n型杂质扩散区38、52的延伸源极-漏极结构的n型源极/漏极区60,如图4(J)所示。同时,在p型晶体管形成区内,形成包含n型杂质扩散区26、28、30的n型阱62和包含p型杂质扩散区44、56的延伸源极-漏极结构的p型源极/漏极区64。

以此方式形成包含栅极绝缘膜32、栅极34n和34p、以及侧壁绝缘膜48的栅极结构体。

其后,如图4(K)所示,形成氮化硅膜66,使其覆盖栅极结构体和硅衬体10的整个区域。此外,例如通过CVD方法在氮化硅膜66上形成例如由400nm膜厚的二氧化硅膜制成的层间绝缘膜68。随后,例如利用CMP(化学机械研磨)方法将层间绝缘膜68平坦化。

然后,露出晶体管的源极/漏极区60和64,以形成从中导引出电极的接触孔。

在接触孔形成步骤,使用通过根据上述实施例提供的光掩模制造方法制成的相移掩模。

至此,如图4(K)所示,首先在层间绝缘膜68上形成抗反射膜70和光致抗蚀剂膜74。

然后,通过例如采用ArF受激准分子激光作为光源的缩小投影曝光设备、利用根据本实施例提供的相移掩模进行曝光,以转移电路图案。在这种情况下的曝光条件例如可以为:数值孔径(NA)为0.70,σ值为0.70,并且曝光量为470J/cm2

之后,在光致抗蚀剂膜74上进行显影以形成抗蚀图案,如图4(L)所示。

接着,通过通用的步骤制造器件。

由此,利用本实施例的器件制造方法,由于使用了由根据上述实施例提供的光掩模制造方法制成的光掩模9(从中去除了监测图案6),因此消除了监测图案6由于向外展开而转移到晶片的这种情况。因此,根据本实施例提供的器件制造方法具有如下优点,即,能够避免由保留在光掩模9上的监测图案6的转移带来的麻烦。

此时,利用晶片图案检查设备(例如KLA公司的KLA2350)检查以如上所述的这种方式制成的半导体器件。检查结果为:没有检测到光掩模的缺陷,并且由根据本实施例的光掩模制造方法制成的光掩模的有效性得到确认。

第二实施例

下面,参照图5(A)至5(H)描述根据本发明的第二实施例提供的光掩模制造方法和器件制造方法。

根据本实施例提供的光掩模制造方法与上述第一实施例的不同之处在于,制造N型半色调相移光掩模(N型光掩模)。请注意,在图5(A)至5(H)中,由相似的标号表示与上述第一实施例(参见图1(A)至1(G))的那些元件类似的元件。

下文将具体参照图5(A)至5(H)描述根据本实施例提供的光掩模制造方法。

首先,如图5(A)所示,在例如由合成石英形成的透明衬底1上依次层叠例如由MoSiON膜形成的半色调相移层(半透明膜)2和例如由铬与氧化铬的层叠膜形成的遮光层3。

然后,如图5(A)所示,例如通过旋涂法向遮光层3涂敷抗蚀剂,形成第一抗蚀层4X。在本实施例中,由于制造N型半色调相移光掩模,因此形成N型抗蚀层作为首先要形成的第一抗蚀层4X。

然后,如图5(B)所示,通过对第一抗蚀层4X执行曝光(制图)、PEB和显影处理,形成主图案(电路图案)5和监测图案(用于确保位置精度的监测图案和用于确保尺寸精度的监测图案)6作为第一抗蚀图案(这里为N型抗蚀图案)4Xp。请注意,依据所使用的抗蚀剂,可以不执行PEB工艺。

其后,如图5(C)所示,利用第一抗蚀图案4Xp作为蚀刻掩模,选择性地蚀刻遮光层3,以形成主图案5和监测图案6作为遮光图案3Xp。然后去除第一抗蚀层4X。

然后在这种状态下,测量监测图案6(6A、6B)。

在测量监测图案6之后,如图5(D)所示,通过向遮光层3涂敷抗蚀剂来形成第二抗蚀层4XA。然后,在第二抗蚀层4XA上绘制主图案并将其显影,使得露出形成在遮光层3上的监测图案6,从而形成第二抗蚀图案(这里为P型抗蚀图案)4XAp。请注意,依据所使用的抗蚀剂,可不执行PEB。

然后,如图5(E)所示,利用第二抗蚀层4XA(第二抗蚀图案4XAp)作为蚀刻掩模,选择性地蚀刻遮光层3,从而去除监测图案6。

之后,如图5(F)所示,去除第二抗蚀层4XA,并利用遮光层3作为蚀刻掩模来选择性地蚀刻半色调相移层2,以在半色调相移层2上形成主图案5。

接着,如图5(G)所示,向遮光层3涂敷抗蚀剂,以形成第三抗蚀层4XB。然后,对电路图案区8的整个区域进行曝光(制图)和显影,以形成第三抗蚀图案4XBp。请注意,依据所使用的抗蚀剂,可执行PEB。

然后,如图5(H)所示,利用第三抗蚀层4XB(第三抗蚀图案4XBp)作为蚀刻掩模选择性地蚀刻遮光层3,然后去除第三抗蚀层4XB,由此完成半色调式相移掩模(光掩模)9X。

这里请注意,尽管主要描述了主图案5和监测图案6,但是形成为光透射部分的用于识别掩模的条形码图案81、用于识别掩模的编号图案82以及用于晶片曝光设备的基准图案83通过与生成主图案5的那些步骤相似的步骤形成。

此外,请注意本实施例的其余细节与上述第一实施例的那些相似,因此不再赘言描述其重复的部分。

由此,利用根据本实施例的光掩模制造方法,与上述第一实施例的情况类似,在制造N型半色调相移光掩模时,监测图案6同样不需保留在最终制成的光掩模9X上。因此,具有这样的优点,即,用于确保和管理光掩模的精度所需的图案能够自由地布局,而无需考虑在监测图案留在光掩模上的情况下由于向外展开等影响而带来的麻烦。由此,能够充分地保证在确保光掩模精度方面的可靠性和用于管理例如掩模趋向等的监测仪的可靠性。结果,能够实现其可靠度高于传统光掩模的可靠度、且具有充分高的精度的光掩模。

请注意,尽管在上述实施例中,描述了具有两层金属层的半色调式相移掩模作为实例,但是光掩模不限于此,而可以是具有两层或更多层金属层的任何光掩模。

例如,光掩模可以是二进制掩模,该掩模的图案由(例如石英衬底的)透射部分和(例如铬的)遮光部分形成,并且其中金属层(允许选择性地蚀刻的金属层)设置在遮光部分上(即该掩模为具有两层金属层的二进制掩模)。此外,光掩模可以是任一上述实施例的半色调式相移掩模的这种改型:金属层(允许选择性地蚀刻的金属层)设置在遮光层上(即具有三层金属层的半色调式相移掩模)。所述掩模是硬掩模式光掩模,其中非抗蚀剂而是金属层用于蚀刻遮光层。

此外,尽管在上述实施例中,本发明应用于光掩模制造方法,但是本发明也可实施为光掩模监测方法。

在这种情况下,光掩模制造方法被设置为,在光掩模制造工艺期间(非最后步骤)测量监测图案。

特别地,诸如金属层2和3之类的两层或更多层金属层形成在衬底1上。然后,在所述两层或更多层金属层2、3中除了最低层2(其上将最终形成掩模图案)之外的一层或多层金属层3上,形成主图案5和监测图案6(用于确保位置精度的监测图案6A和用于确保尺寸精度的监测图案6B)。至此,除了最低层2之外的一层或多层金属层3由允许选择性地蚀刻的材料形成。然后,在这种状态下,测量监测图案6。接着,利用监测图案6的测量结果来确保主图案5的精度和/或管理光掩模。

本发明不限于上述具体公开的实施例,不脱离本发明的范围可对本发明进行各种变化和改型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号