首页> 中国专利> 二氢吡咯并嘧啶类选择性JAK2抑制剂

二氢吡咯并嘧啶类选择性JAK2抑制剂

摘要

本发明属于生物医药技术领域,具体涉及一种二氢吡咯并嘧啶类选择性JAK2抑制剂或其药学上可接受的盐。与现有技术相比,本发明提供的吡咯并嘧啶类化合物、其立体异构体及其药学上可接受的盐具有更好的两面神激酶抑制活性,且其对JAK2抑制靶点选择性显著优于现有化合物,且本发明的优选化合物表现出良好的药代动力学性质,具有开发成为选择性JAK2抑制剂的潜力。

著录项

  • 公开/公告号CN110305140A

    专利类型发明专利

  • 公开/公告日2019-10-08

    原文格式PDF

  • 申请/专利权人 上海勋和医药科技有限公司;

    申请/专利号CN201910698079.2

  • 申请日2019-07-30

  • 分类号C07D487/04(20060101);A61K31/519(20060101);A61P37/06(20060101);A61P19/02(20060101);A61P17/00(20060101);A61P37/00(20060101);A61P9/10(20060101);A61P1/04(20060101);A61P17/06(20060101);A61P17/04(20060101);A61P11/02(20060101);A61P11/06(20060101);A61P31/20(20060101);A61P31/14(20060101);A61P25/28(20060101);A61P27/02(20060101);A61P35/00(20060101);A61P35/02(20060101);A61P3/10(20060101);A61P5/14(20060101);

  • 代理机构32280 常州市权航专利代理有限公司;

  • 代理人黄晶晶

  • 地址 200000 上海市浦东新区川桥路1295号2号楼5层上海勋和医药科技有限公司

  • 入库时间 2024-02-19 13:22:15

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-04

    授权

    授权

  • 2019-11-01

    实质审查的生效 IPC(主分类):C07D487/04 申请日:20190730

    实质审查的生效

  • 2019-10-08

    公开

    公开

说明书

技术领域

本发明属于生物医药技术领域,具体涉及一种二氢吡咯并嘧啶类选择性JAK2抑制剂及其药学上可接受的盐。

背景技术

JAK即Janus Kinase(两面神激酶),是一种非受体型酪氨酸蛋白激酶(PTK)。JAK-STAT通路主要由四个部分组成:(1)胞外信号因子;(2)受体;(3)JAK激酶;(4)信号转导及转录激活蛋白(STAT)。JAK-STAT是除了第二信使系统外最重要的信号途径。JAK激酶通过结合受体感受胞外的信号,如干扰素、白细胞介素、生长因子等,并将信息传送到STATs。磷酸化的STATs能够从胞内转移到细胞核。而每种不同的STAT结合到各不相同的启动子DNA序列上。启动子会控制其DNA序列表达,引起DNA转录与活性水平发生改变,进而影响细胞生长、分化及死亡等基本细胞功能。

JAK激酶家族的蛋白共有4个,包括JAK1、JAK2、JAK3、TYK2。从功能获得性表达或突变分析来看,JAK1、JAK3更多的与免疫调节有关,JAK2则与红细胞和血小板的生成直接相关。从功能缺失分析来看,JAK1、JAK2功能缺失会造成老鼠胚胎致死,在人体中尚未发现JAK1、JAK2功能缺失相关的疾病,也许间接表明了JAK1/2生理功能的重要性。JAK3功能缺失会造成严重的综合免疫缺陷,这也是后面提到的靶向JAK3,从而调节自身免疫相关疾病的依据。TYK2的功能研究较少,有报道其会引起与内在免疫相关的缺陷。

JAK2V617F突变在骨髓增生性肿瘤(MPN)中的发现大大促进了JAK2抑制剂的开发。MPN是一组以骨髓中异常造血祖细胞增殖为特征的慢性疾病。MPN包括骨髓纤维化(myelofibrosis,MF)、真性红细胞增多症(Polycythemia vera,PV)、原发性血小板增多症(EssentialThrombocythemia,ET)和慢性髓细胞白血病(Chronic MyelogenousLeukemia,CML)。大约95%的PV患者和50-60%的MF和ET患者都发现有JAK2V617F单氨基酸突变,引起了JAK2构象改变,造成了不依赖胞外细胞因子信号的激酶区域的持续激活,进而引起细胞增生和血液癌症。

WO2007070514A报道的Ruxolitinib最初由Incyte开发,是一个JAK1/JAK2小分子激酶抑制剂。于2011年11月获得FDA批准,用于治疗中、高危的骨髓纤维化MF。2014年进一步获批用于真性红细胞增多症。Ruxolitinib能够达到缓解JAK2V617F突变引起的脾脏增大,减轻患者虚弱的症状。

Ruxolitinib不能够减少变异血癌细胞的JAK2V617F突变负荷,所以Ruxolitinib几乎不能带来治愈效果。另外由于Ruxolitinib的JAK2靶点选择性不高,副作用明显,Ruxolitinib的毒副作用主要包括贫血、血小板减少症、中性粒细胞减少症和腹泻等。

早期的报道显示Ruxolitinib停药后出现明显的、预后较差的炎症综合症,在随后3年的随访中,没有观察到持续的类似的不良反应,提示此类反应可能为停用Ruxolitinib所致的严重的戒断性炎症综合征,应密切监测脾脏的大小,如果在Ruxolitinib治疗期间脾脏仍有长大,停药后MF的相关症状有可能回归到基线水平甚至继续进展。因此当考虑中断Ruxolitinib治疗时,应逐渐减少剂量或合并使用皮质激素治疗。

新一代的MPN药物开发重点集中在JAK2选择性的抑制剂,期望能够降低由于靶向JAK1引起的过多副作用的同时增加疗效。

目前,已经公开了一系列JAK抑制剂的专利申请,如CN101370792A、WO2010017122、CN101421250A、WO2010074947A1等。尽管已公开了一系列JAK抑制剂,但仍需开发新的具有更好药效、更低副作用的JAK抑制剂类化合物,特别是JAK2选择性抑制剂。

发明内容

为了克服现有技术中所存在的问题,本发明的目的在于提供一种二氢吡咯并嘧啶类JAK2选择性抑制剂。

为了实现上述目的以及其他相关目的,本发明采用如下技术方案:一种如式I所示的二氢吡咯并嘧啶类化合物、其药学上可接受的盐:

其中:

X为O或不存在;

Y为O、S、SO2或NR;

W为N或CH;

R为氢、C1~6烷基、C2~6烯基、C2~6炔基、C1~6烷氧基、或C1~6羰基;

m为0、1、2、3、4、5或6;

n为0、1或2。

优选的,其中:

X为O或不存在;

Y为O、S、SO2或NR;

W为N或CH;

R为氢或C14烷基;

m为0、1、2或3;

n为0或1。

更加优选的,其中:

X为O或不存在;

Y为O、S、SO2或NR;

W为N或CH;

R为氢或C13烷基;

m为0、1或2;

n为0或1。

更进一步的,其中:

X为O或不存在;

Y为O、S、SO2或NR;

W为N或CH;

R为氢或甲基;

m为0、1或2;

n为0或1。

本发明的典型化合物包括,但不限于以下表1化合物:

表1

本发明的第二目的在于提供了上述化合物的合成方法:

(1)化合物1与2经缩合反应制得3;

(2)化合物3经过硫酸氢钾氧化得到化合物4;

(3)化合物4经硼氢化钠还原得到化合物5;

(4)化合物5的羟基经甲烷磺酰氯活化后发生环合反应制得通用中间体7;

(5)化合物7与通式IA化合物缩合反应制得终产物I;

步骤(5)中各基团的定义如前文所述。

本发明的第三目的在于提供上述化合物作为新型JAK抑制剂在制备预防或治疗与JAK相关疾病的药物中的用途,具体的主要是指预防或治疗下列疾病:免疫系统的疾病,包括器官移植排斥(如异体抑制排斥和移植物抗宿主疾病);自身免疫性疾病,包括例如狼疮、多发性硬化、类风湿性关节炎、青少年关节炎、银屑病、溃病性结肠炎、克罗恩氏病、自体免疫性甲状腺疾病等;皮肤病,包括例如牛皮藓、皮痒、特应性皮炎等:变应性病症,包括例如哮喘、鼻炎等;病毒性疾病,包括例如乙型肝炎、丙型肝炎、水痘-带状疱疹病毒等;I型糖尿病与糖尿病并发症;阿尔茨海默病、干眼病、骨髓纤维化、血小板增多症、红细胞增多症或白血病、多发性骨髓瘤;癌症,包括例如实体瘤(如前列腺癌、肾癌、肝癌、膜腺癌、胃癌、乳腺癌、肺癌、头颈部癌、甲状腺癌、胶质母细胞瘤、黑素瘤等)、皮肤癌(如皮肤T细胞淋巴瘤、皮肤仔细胞淋巴瘤)等。

本发明的衍生物在实施疾病治疗过程中,可以组合物的形成通过口服、注射等方式,用于治疗相关癌症及其他疾病。用于口服时,可将其制备成常规的固体制剂如片剂、粉剂或胶囊等;用于注射时,可将其制备成注射液。

本发明的第四目的在于提供一种组合物,所述组合物包括治疗有效量的上述吡咯并嘧啶类化合物、其立体异构体、其药学上可接受的盐和药学上可接受的载体。

药学上可接受的盐,例如,可以提及金属盐、接盐、与有机碱形成的盐、与无机酸形成的盐、与有机酸形成的盐、与碱性或者酸性氨基酸形成的盐等。金属盐的非限制性实例包括但不限于碱金属的盐,例如钠盐、钾盐等;碱土金属的盐,例如钙盐、镁盐、钡盐、铝盐等。与无机酸形成的盐的非限制性实例包括但不限于与盐酸、氢溴酸、硝酸、硫酸、磷酸等形成的盐。与有机酸形成的盐的非限制性实例包括但不限于与甲酸、乙酸、三氟乙酸、富马酸、草酸、苹果酸、马来酸、酒石酸、柠檬酸、琥珀酸、甲磺酸、苯磺酸、对甲基苯磺酸等形成的盐。

所述及的载体是指药学领域常规的载体,如:稀释剂、赋形剂如水等;粘合剂如纤维素衍生物、明胶、聚乙烯吡咯烷酮等;填充剂如淀粉等;崩裂剂如碳酸钙、碳酸氢钠;另外,还可以在组合物中加入其他辅助剂如香味剂和甜味剂。

本发明的组合物的各种剂型可以采用医学领域常规的方法进行制备,其中活性成分的含量为0.1%~99.5%(重量比)。

本发明的施用量可根据用药途径、患者的年龄、体重、所治疗的疾病的类型和严重程度等进行变化,其日剂量为0.001-30mg/kg体重(口服)或0.005-30mg/kg体重(注射)。

与现有技术相比,本发明提供的吡咯并嘧啶类化合物、其立体异构体及其药学上可接受的盐具有更好的两面神激酶抑制活性,且其对JAK2抑制靶点选择性显著优于现有化合物,且本发明的优选化合物表现出良好的药代动力学性质,具有开发成为选择性JAK2抑制剂的潜力。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

参考例1:通用中间体7的合成路线。

操作步骤:步骤1,中间体3的合成。

化合物1(246mg,1.0mmol)、2(228mg,1.0mmol)加入DMSO(8mL)中,150℃条件下微波反应2h。反应混合物减压浓缩至干,剩余物经硅胶柱层析纯化(流动相为二氯甲烷),得黄色固体中间体3(186mg,收率42%)。

1HNMR(400MHz,DMSO-d6):δ=8.97(s,1H),8.17(s,1H),8.08(s,1H),7.87-7.81(m,1H),7.54-7.46(m,3H),4.10(q,J=7.2Hz,2H),3.79(s,2H),2.44(s,3H),1.21(t,J=7.2Hz,3H),1.12(s,9H).LCMS:MS>

步骤2,中间体4的合成。

向化合物3(480mg,1.1mmol)的DMF(20mL)溶液中加入过硫酸氢钾(1.35g,2.2mmol)。反应液室温搅拌过夜,LC-MS监控反应完全。反应混合物减压浓缩至干,剩余物经硅胶柱层析纯化(流动相为二氯甲烷/甲醇:30/1),得黄色固体中间体4(220mg,收率43%)。LCMS:MS Calcd.:470.6,MS Found:471.2。

步骤3,中间体5的合成。

向化合物4(1.06g,2.42mmol)的THF(60mL)溶液中加入硼氢化钠(184mg,4.84mmol),反应液室温搅拌过夜,TLC监控反应完全。反应混合物减压浓缩至干,剩余物经硅胶柱层析纯化(流动相为二氯甲烷/甲醇:100/1至30/1),得白色固体中间体5(622mg,收率65%)。LCMS:MS Calcd.:428.5,MS Found:429.2。

步骤4,中间体6的合成。

向化合物4(142mg,0.33mmol)的二氯甲烷(20mL)溶液中加入甲烷磺酰氯(76mg,0.66mmol)和三乙胺(100mg,0.99mmol),反应液室温搅拌1h,TLC监控反应完全。反应混合物减压浓缩至干,剩余物经硅胶柱层析纯化(流动相为二氯甲烷/甲醇:100/1至30/1),得黄色固体中间体6(122mg,收率72%)。LCMS:MS Calcd.:506.6,MS Found:507.3。

步骤5,中间体7的合成。

向化合物5(122mg,0.24mmol)的DMF(10mL)溶液中加入DBU(36mg,0.24mmol),反应液80℃搅拌反应1h,LC-MS监控反应完全。反应混合物减压浓缩至干,剩余物经prep-HPLC(NH4Ac>1HNMR(400MHz,CDCl3):δ=8.50(s,1H),8.24(s,1H),7.92(dd,J=1.6Hz,1H),7.66(d,J=8.0Hz,1H),7.55(t,J=8.0Hz,1H),4.65(m,1H),4.29(s,1H),4.29(t,J=8.8Hz,2H),3.40-3.26(m,5H),1.26(s,9H)。

实施例1:I-1的合成

合成路线:

操作步骤:

化合物7(20mg,0.05mmol)、IA-1(30mg,0.15mmol)加入三氟乙酸(5mL)中,体系加热至内温100℃反应12h,LC-MS监控反应完全。反应混合物减压浓缩至干,剩余物经prep-HPLC(NH4Ac>1HNMR(400MHz,CD3OD):δ=8.34(s,1H),7.97(d,J=8.4Hz,1H),7.70(s,1H),7.47-7.33(m,4H),6.84(d,J=8.8Hz,2H),4.08-3.97(m,4H),2.99(t,J=8.4Hz,2H),2.85(t,J=5.2Hz,2H),2.67-2.56(m,4H),1.80-1.68(m,4H),1.08(s,9H).LCMS:MS>

实施例2:I-2的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率70%。1HNMR(400MHz,CD3OD):δ=8.35(s,1H),7.96(d,J=8.0Hz,1H),7.71(s,1H),7.45-7.35(m,4H),6.83(d,J=8.8Hz,2H),4.05-3.97(m,4H),2.97(t,J=8.4Hz,2H),2.87(t,J=5.6Hz,2H),2.65-2.56(m,4H),2.47-2.25(m,4H),1.07(s,9H).LCMS:MS>

实施例3:I-3的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率75%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.95(d,J=8.0Hz,1H),7.73(s,1H),7.44-7.35(m,4H),6.82(d,J=8.4Hz,2H),4.06-3.97(m,4H),3.87-3.59(m,4H),2.98(t,J=8.4Hz,2H),2.87(t,J=5.6Hz,2H),2.45-2.28(m,4H),1.09(s,9H).LCMS:MS>

实施例4:I-4的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率73%。1HNMR(400MHz,CD3OD):δ=8.37(s,1H),7.97(d,J=8.0Hz,1H),7.72(s,1H),7.46-7.37(m,4H),6.82(d,J=8.8Hz,2H),4.06-3.97(m,4H),2.96(t,J=8.0Hz,2H),2.88(t,J=5.6Hz,2H),2.67-2.56(m,4H),2.48-2.27(m,4H),2.25(s,3H),1.05(s,9H).LCMS:MS>

实施例5:I-5的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率79%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.93(d,J=8.0Hz,1H),7.70(s,1H),7.43-7.31(m,4H),6.80(d,J=8.0Hz,2H),4.07-3.98(m,4H),2.97(t,J=8.0Hz,2H),2.88(t,J=5.2Hz,2H),2.49-2.31(m,4H),1.67-1.52(m,6H),1.07(s,9H).LCMS:MS>

实施例6:I-6的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率67%。1HNMR(400MHz,CD3OD):δ=8.34(s,1H),7.95(d,J=8.0Hz,1H),7.72(s,1H),7.43-7.32(m,4H),6.83(d,J=8.0Hz,2H),4.09-3.98(m,4H),3.69-3.57(m,4H),2.98(t,J=8.0Hz,2H),2.93-2.89(m,4H),2.85(t,J=5.2Hz,2H),1.07(s,9H).LCMS:MS>

实施例7:I-7的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率75%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.93(m,1H),7.71(s,1H),7.43-7.31(m,4H),6.82(d,J=8.0Hz,2H),4.10(t,J=8.0Hz,2H),2.97(t,J=8.0Hz,2H),2.57-2.43(m,6H),2.29(s,3H),1.81-1.63(m,5H),1.08(s,9H).LCMS:MS>

实施例8:I-8的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率78%。1HNMR(400MHz,CD3OD):δ=8.35(s,1H),7.94(d,J=8.0Hz,1H),,7.72(s,1H),7.45-7.31(m,4H),6.86(d,J=8.0Hz,2H),4.13(t,J=8.0Hz,2H),3.69(s,2H),2.99(t,J=8.0Hz,2H),2.56-2.38(m,10H),1.09(s,9H),1.03(m,3H).LCMS:MS>

实施例9:I-9的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率71%。1HNMR(400MHz,CD3OD):δ=8.31(s,1H),7.92(d,J=8.0Hz,1H),,7.70(s,1H),7.44-7.29(m,4H),6.85(d,J=8.0Hz,2H),4.12(t,J=8.0Hz,2H),3.69(s,2H),3.51-3.37(m,4H),2.97(t,J=8.0Hz,2H),2.87-2.78(m,4H),1.09(s,9H).LCMS:MS>

实施例10:I-10的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率75%。1HNMR(400MHz,CD3OD):δ=8.34(s,1H),7.91(m,1H),7.70(s,1H),7.42-7.31(m,4H),6.84(d,J=8.0Hz,2H),4.12(t,J=8.0Hz,2H),3.72-3.55(m,4H),2.97(t,J=8.0Hz,2H),2.45(s,2H),1.81-1.62(m,5H),1.06(s,9H).LCMS:MS>

实施例11:I-11的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率71%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.92(d,J=8.0Hz,1H),,7.73(s,1H),7.41-7.29(m,4H),6.84(d,J=8.0Hz,2H),4.13(t,J=8.0Hz,2H),3.69-3.65(m,6H),2.97(t,J=8.0Hz,2H),2.55-2.48(m,4H),1.05(s,9H).LCMS:MS>

实施例12:I-12的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率68%。1HNMR(400MHz,CD3OD):δ=8.31(s,1H),7.92(d,J=8.0Hz,1H),,7.69(s,1H),7.42-7.31(m,4H),6.83(d,J=8.0Hz,2H),4.14(t,J=8.0Hz,2H),3.67(s,2H),3.03(t,J=8.0Hz,2H),2.49-2.38(m,8H),2.30(s,3H),1.06(s,9H).LCMS:MS>

实施例13:I-13的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率65%。1HNMR(400MHz,CD3OD):δ=8.32(s,1H),7.92(d,J=8.0Hz,1H),,7.70(s,1H),7.40-7.29(m,4H),6.83(d,J=8.0Hz,2H),4.12(t,J=8.0Hz,2H),3.67(s,2H),2.95(t,J=8.0Hz,2H),2.53-2.43(m,8H),1.07(s,9H).LCMS:MS>

实施例14:I-14的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率75%。1HNMR(400MHz,CD3OD):δ=8.32(s,1H),7.90(d,J=8.0Hz,1H),7.75(s,1H),7.42-7.35(m,4H),6.83(d,J=8.4Hz,2H),4.07-3.97(m,4H),3.89-3.67(m,4H),2.97(t,J=8.4Hz,2H),2.82(t,J=5.6Hz,2H),2.46-2.28(m,4H),1.08(s,9H).LCMS:MS>

实施例15:I-15的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率73%。1HNMR(400MHz,CD3OD):δ=8.38(s,1H),7.96(d,J=8.0Hz,1H),7.71(s,1H),7.48-7.33(m,4H),6.91(d,J=9.2Hz,2H),4.05(t,J=8.4Hz,2H),3.12-3.15(m,4H),3.01(t,J=8.0Hz,2H),2.58-2.48(m,4H),2.26(s,3H),1.07(s,9H).LCMS:MS>

实施例16:I-16的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率70%。1HNMR(400MHz,CD3OD):δ=8.35(s,1H),7.95(d,J=8.0Hz,1H),7.70(s,1H),7.49-7.33(m,4H),6.90(d,J=9.2Hz,2H),4.09(t,J=8.4Hz,2H),3.52-3.45(m,4H),2.98(t,J=8.0Hz,2H),2.68-2.57(m,4H),1.07(s,9H).LCMS:MS>

实施例17:I-17的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率63%。1HNMR(400MHz,CD3OD):δ=8.34(s,1H),7.93(d,J=8.0Hz,1H),7.71(s,1H),7.48-7.33(m,4H),6.90(d,J=9.2Hz,2H),4.13(t,J=8.4Hz,2H),3.79-3.60(m,4H),3.25-3.12(m,4H),2.99(t,J=8.0Hz,2H),1.09(s,9H).LCMS:MS>

实施例18:I-18的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率73%。1HNMR(400MHz,CD3OD):δ=8.35(s,1H),7.92(d,J=8.0Hz,1H),7.70(s,1H),7.47-7.31(m,4H),6.93(d,J=9.2Hz,2H),4.12(t,J=8.0Hz,2H),3.59-3.40(m,4H),2.97(t,J=8.0Hz,2H),1.59-1.43(m,5H),1.07(s,9H).LCMS:MS>

实施例19:I-19的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率76%。1HNMR(400MHz,CD3OD):δ=8.34(s,1H),7.91(d,J=8.0Hz,1H),7.75(s,1H),7.45-7.31(m,4H),6.91(d,J=9.2Hz,2H),4.13(t,J=8.0Hz,2H),3.75(m,1H),2.98(t,J=8.0Hz,2H),2.68-2.50(m,4H),2.20-2.13(m,4H),1.08(s,9H).LCMS:MS>

实施例20:I-20的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率79%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.91(d,J=8.0Hz,1H),7.70(s,1H),7.49-7.33(m,4H),6.93(d,J=9.2Hz,2H),4.10(t,J=8.0Hz,2H),2.97(t,J=8.0Hz,2H),2.79-2.60(m,5H),2.10-1.98(m,4H),1.07(s,9H).LCMS:MS>

实施例21:I-21的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率77%。1HNMR(400MHz,CD3OD):δ=8.32(s,1H),7.93(d,J=8.0Hz,1H),7.71(s,1H),7.47-7.32(m,4H),6.91(d,J=8.8Hz,2H),4.13(t,J=8.0Hz,2H),3.03(t,J=8.0Hz,2H),2.79(m,1H),2.49-2.35(m,4H),2.27(s,3H),1.89-1.75(m,4H),1.05(s,9H).LCMS:MS>

实施例22:I-22的合成

合成路线:

操作步骤:

操作步骤及纯化方法参见实施例1,收率76%。1HNMR(400MHz,CD3OD):δ=8.33(s,1H),7.91(d,J=8.0Hz,1H),,7.72(s,1H),7.43-7.29(m,4H),6.85(d,J=8.0Hz,2H),4.14(t,J=8.0Hz,2H),3.69(s,2H),2.97(t,J=8.0Hz,2H),2.51-2.43(m,4H),1.67-1.52(m,4H),1.08(s,9H).LCMS:MS>

生物测试

测试例1、JAK1、JAK2、JAK3活性测试

化合物配制:

化合物溶解在100%DMSO中,配制成10mM储存液,-20℃冻存。

激酶反应过程:

(1)配制1×Kinase buffer。

(2)化合物浓度梯度的配制:受试化合物起始浓度为500nM,在384source板中稀释成100倍终浓度的100%DMSO溶液,用Precision 3倍稀释化合物,12个浓度。使用分液器Echo 550向目的板OptiPlate-384F转移250nL 100倍终浓度的化合物。

(3)用1×Kinase buffer配制2.5倍终浓度的激酶溶液。

(4)在化合物孔和阳性对照孔分别加10μL的2.5倍终浓度的激酶溶液;在阴性对照孔中加10μL的1×Kinase buffer。

(5)1000rpm离心30秒,反应板振荡混匀后室温孵育10分钟。

(6)用1×Kinase buffer配制5/3倍终浓度的ATP和Kinase substrate的混合溶液。

(7)加入15μL的5/3倍终浓度的ATP和底物的混合溶液,起始反应。

(8)将384孔板1000rpm离心30秒,振荡混匀后室温孵育相应的时间。

(9)加入30μL终止检测液停止激酶反应,1000rpm离心30秒,振荡混匀。

(10)用Caliper EZ Reader读取转化率。

数据分析:

计算公式:

其中:Conversion%_sample是样品的转化率读数;Conversion%_min:阴性对照孔均值,代表没有酶活孔的转化率读数;Conversion%_max:阳性对照孔比值均值,代表没有化合物抑制孔的转化率读数。

拟合量效曲线:

以浓度的log值作为X轴,百分比抑制率为Y轴,采用分析软件GraphPad Prism 5的log(inhibitor)vs.response-Variable slope拟合量效曲线,从而得出各个化合物对酶活性的IC50值,计算公式:

Y=Bottom+(Top-Bottom)/(1+10^((LogIC50-X)*HillSlope))

上述实验结果如表2所示。

表2、化合物酶实验测试结果

注:以上对照均品、本发明化合物均为同一实验条件实测值。

结论:本发明化合物对JAK2靶点选择性优于阳性对照Baricitinib、Ruxolitinib、Fedratinib。

测试例2、细胞增殖实验

HEL92.1.7细胞增殖实验

实验步骤:

(1)铺板

a.将细胞消化重悬,使用自动细胞计数器计数;

b.将细胞悬浮液稀释至所需密度;

c.每个孔铺100ul细胞,37℃培养过夜;

(2)化合物配制

a.将化合物配成终浓度200倍的稀释溶液;

b.用培养基稀释化合物,配成终浓度3倍的化合物。每孔加50ul化合物,以加入同样体积的DMSO的孔作为对照,37℃,5%CO2培养72小时;

(3)检测

a.将细胞板平衡到室温;

b.每孔加40μL Cell试剂,振2分钟,静置10分钟;

c.用EnVision检测。

数据分析:

(1)使用GraphPad Prism 5计算IC50。

(2)%Inh=(Max signal-Compound signal)/(Max signal-Min signal)x 100。

(3)Max signal为阳性对照孔,只有和化合物同等体积的DMSO。

(4)Min signal为阴性对照孔,只有培养基。

TF-1细胞增殖实验

(1)细胞铺板

a.配制完全培养基。

b.复苏细胞,培养细胞。

c.细胞离心,重悬,计数,铺板,将培养板放置于CO2培养箱中过夜。

(2)化合物的准备和添加

a.用DMSO将化合物配制成10mM的stock储存液,将10mM稀释成工作浓度,逐步倍数稀释,得到多个浓度梯度的化合物。

b.从相应的化合物板中移取0.5ul加入过夜培养的细胞培养板中。

c.在37℃培养箱中孵育72小时。

(3)检测及分析

a.配制CellTiter Glo assay检测试剂。

b.将检测试剂加入培养板中,混匀,静置,读板。

抑制率公式为(1-(对应孔的数值-BLANK的平均值)/(DMSO对照的平均值-BLANK的平均值))*100%)

曲线拟合工具(XL fit)公式为Data Analysis:(XLfit software:Fit model:Dose response one site/f(x)205[fit=(A+((B-A)/(1+((C/x)^D))))])

上述实验结果如表3所示。

表3、细胞增殖实验测试结果

注:以上对照均品、本发明化合物均为同一实验条件实测值。

结论:本发明化合物对HEL92.1.7、TF-1具有明显的增殖抑制活性,抑制活性优于Fedratinib、Ruxolitinib。

测试例3、本发明化合物药代动力学测试

以SD大鼠为受试动物,采用LC/MS/MS法测定大鼠灌胃给予Fedratinib和本发明优选实施例化合物后,测定其不同时刻血浆中的药物浓度,研究本发明化合物在大鼠体内药代动力学特征。

SD大鼠来源:上海斯莱克实验动物有限公司

给药方式:单次灌胃给药

给药剂量及浓度:25mg/kg;2mg/mL

制剂处方:0.5%methylcellulose

取样点:5min,15min,30min,1h,2h,4h,8h,24h.

标准曲线和质控样本配制处理:取适量储备液用50%乙腈水稀释成0.04、0.10、0.20、0.40、1.00、2.00、4.00μg/mL的标准工作液,0.10、1.00、3.00μg/mL的质控工作液。分别取47.5μL空白大鼠血浆中加入2.50μL的标准曲线工作液和质控工作液,配置成含待测物浓度为2.00、5.00、10.00、20.00、50.00、100.00、200.00ng/mL的标曲和浓度为5.00、50.00和150.00ng/mL的质控样本,分别加入200μL的乙腈(含内标氯雷他定5ng/mL),涡旋振荡3min后,15000rpm,4℃离心15min,取上清液100μL进行LC-MS/MS分析。采用8.0计算实验结果。

本发明优选化合物药代动力学参数如表4所示。

表4:优选化合物药代动力学参数

结论:本发明实施例化合物表现出良好的药代动力学性质,与Fedratinib相比,具有明显的药代动力学优势。测试例4、本发明化合物急性毒性试验

选取7种本发明所述的化合物(I-1、I-2、I-4、I-13、I-15、I-19和I-20),以及Fedratinib(阳性对照药)进行急性毒性实验。

(1)实验方案

①、观察其口服给予ICR小鼠Fedratinib、本发明所述I-1等化合物后动物出现的毒性征状和死亡情况,比较其急性毒性。

②、溶媒配制:称取适量吐温-80,用去离子水稀释至浓度为5%(g/v)吐温-80。

③、给药制剂:分别称取所需的供试品,用5%吐温80溶液配制成浓度为6.25、12.50、25.00、50.00、75.00和100.00mg/mL(分别相当于125、250、500、1000、1500、2000mg/kg)混悬液。

④、给药途径:供试品及溶媒对照组(0.5%吐温-80)的给药途径均为经口服给予。

⑤、给药频率:单次给药,给药前均隔夜禁食。

⑥、给药容量:20mL/kg。

一般征状观察:给药当天于第一次给药后约0.5、1、2、4、6小时分别观察1次;观察期第2~6天,每天观察2次,上、下午各1次。

观察内容包括但不限制于:一般状况、行为活动、步态姿势、眼、口、鼻、胃肠道、皮肤被毛、泌尿生殖道。

(2)统计分析

体重数据以均数±标准差表示,并采用组间比较采用Levene`s检验和单因素方差分析,如果显示有差异,再采用Dunnet t检验。

(3)实验结果

选取7种本发明所述的化合物,以及Fedratinib(阳性对照药)如上述进行急性毒性实验。实验结果见表5。

MTD试验中,考察动物对药物的耐受情况,给药剂量达到动物频临死亡时,即是最大耐受量。

表5:I-1等化合物及Fedratinib单次口服给药急性毒性实验结果

注:MTD:最大耐受量。

结果表明:上述受试物中本发明化合物I-1、I-15、I-20的MTD(最大耐受量)均大于2000mg/kg,急性毒性远远低于Fedratinib;化合物I-2、I-4、I-13、I-19的MTD值均大于或等于1000mg/kg,安全性比Fedratinib好。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号