首页> 外文OA文献 >Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes
【2h】

Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes

机译:Hermite WENO方案及其作为Runge-Kutta间断Galerkin方法的限制器,III:非结构化网格

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In [J. Comput. Phys. 193:115-135, 2004] and [Comput. Fluids 34:642-663, 2005], Qiu and Shu developed a class of high order weighted essentially non-oscillatory (WENO) schemes based on Hermite polynomials, termed HWENO (Hermite WENO) schemes, for solving nonlinear hyperbolic conservation law systems, and applied them as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes. The emphasis is again on the application of such HWENO finite volume methodology as limiters for RKDG methods to maintain compactness of RKDG methods. Numerical experiments for two dimensional Burgers' equation and Euler equations of compressible gas dynamics are presented to show the effectiveness of these methods.
机译:在[J.计算物理193:115-135,2004]和[计算。流体34:642-663,2005],邱和舒开发了一种基于Hermite多项式的高阶加权基本非振荡(WENO)方案,称为HWENO(Hermite WENO)方案,用于求解非线性双曲守恒律系统,以及将它们用作结构网格上的Runge-Kutta不连续Galerkin(RKDG)方法的限制器。在本文的续篇中,我们将方法扩展为解决非结构化网格上的二维问题。再次强调将这种HWENO有限体积方法学用作RKDG方法的限制器,以保持RKDG方法的紧凑性。提出了二维Burgers方程和可压缩气体动力学Euler方程的数值实验,以证明这些方法的有效性。

著录项

  • 作者

    Zhu J; Qiu JX; 邱建贤;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号