首页> 外文OA文献 >Growth and Characterization of Epitaxial Al Layers on GaAs and Si Substrates for Superconducting CPW Resonators in Scalable Quantum Computing Systems
【2h】

Growth and Characterization of Epitaxial Al Layers on GaAs and Si Substrates for Superconducting CPW Resonators in Scalable Quantum Computing Systems

机译:可扩展量子计算系统中超导CPW谐振器的GaAs和Si衬底上外延Al层的生长和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growth of Aluminum (Al) on semiconductors and dielectrics is a cornerstone in the quest for scalable quantum computing systems. Indeed the electrical properties of Al make it an exceptional candidate for the realization of superconducting resonators, pivotal tools for understanding and operating superconducting qubits. Such resonators have been fabricated recently on Sapphire substrates, using molecular beam epitaxy (MBE), and displayed quality factors above a million. Complementary studies of these resonators have demonstrated that the metal-substrate interface was the primary source of decoherence and losses, highlighting the importance of pristine interfaces (free of contaminants), and high quality epitaxial growth in order to minimize the native defects level. In this work we investigate different substrate materials in order to yield equivalent or higher quality factor resonators. Gallium Arsenide (GaAs) and Silicon (Si) were selected for their good dielectric properties, well-established processing techniques and a potential on-chip integration. After thermal substrate annealing, and in some cases deposition of a buffer structure, Al was grown on both substrates at low temperature, using MBE. In view of the extreme sensitivity of the resulting Al crystal orientation to the initial surface conditions, different starting surface reconstructions were investigated. Growth evolution was studied with reflection high energy electron diffraction simultaneously at several azimuths during deposition on rotating substrates. The substrate temperature, the system background pressure and possible sources of contamination were monitored carefully to ensure the reproducibility of the results. Resulting layers were subsequently characterized with X-ray diffraction (XRD) to confirm their epitaxial nature and crystallographic orientation. Finally, atomic force microscopy was used to assess the layers morphology. Different growth modes were observed depending on the material: Al grew in a Stranski-Krastanov mode on GaAs(001) surfaces, in a Frank-van-der-Merwe mode on Si(111) surfaces and in a Volmer-Weber mode on Si(001) surfaces. All yielded crystalline structures. Targeting atomically smooth single crystalline materials, best results were obtained for Al(110) deposited on GaAs(001)-(2x4) substrates with surfaces showing RMS roughness of 0.552nm. While the epitaxy on Si(111)-(``1x1") led to single-crystalline Al(111) layers with a RMS roughness of only 0.487nm, a detailed XRD study indicated a possible misalignment of the crystallites that could induce defects in the material. Similarly, epitaxy on Si(111)-(7x7) substrates yielded Al(111) layers of a RMS roughness of 0.519nm that, however, appeared rougher under the Nomarski microscope, likely due to the surface preparation prior to Al deposition. The deposition on Si(001)-(2x1) substrates led to bi-crystals of Al(110) of higher RMS roughness (0.719nm). Finally, the growth on GaAs(001)-(4x4) reconstruction led to polycrystalline materials with mixed Al(100), Al(110) and Al(111) of RMS roughness 1.20nm. Moreover, the composition of the layers grown on the GaAs(001)-(4x4) reconstruction was inconsistent across multiple growths.
机译:半导体和电介质上铝(Al)的生长是寻求可扩展量子计算系统的基石。实际上,Al的电特性使其成为实现超导谐振器,理解和操作超导量子位的关键工具的绝佳候选者。最近已经使用分子束外延(MBE)在蓝宝石衬底上制造了这种谐振器,并显示出超过一百万的品质因数。对这些谐振器的补充研究表明,金属-基体界面是退相干和损耗的主要来源,突出了原始界面(无污染物)和高质量外延生长的重要性,以最大程度地减少自然缺陷水平。在这项工作中,我们研究了不同的基板材料,以生产出等效或更高品质因数的谐振器。选择砷化镓(GaAs)和硅(Si)是因为它们具有良好的介电性能,成熟的处理技术和潜在的片上集成度。在对衬底进行热退火之后,在某些情况下会沉积缓冲结构,然后使用MBE在两个衬底上在低温下生长Al。考虑到所得Al晶体取向对初始表面条件的极端敏感性,研究了不同的初始表面重构。在旋转的衬底上沉积的同时,在多个方位上用反射高能电子衍射同时研究了生长演化。仔细监测基材温度,系统背景压力和可能的污染源,以确保结果的可重复性。随后用X射线衍射(XRD)对所得层进行表征,以确认其外延性质和晶体学取向。最后,原子力显微镜用于评估层的形态。根据材料观察到不同的生长模式:Al在GaAs(001)表面上以Stranski-Krastanov模式生长,在Si(111)表面上以Frank-van-der-Merwe模式生长,并在Si上以Volmer-Weber模式生长(001)表面。全部产生晶体结构。针对原子光滑的单晶材料,对于沉积在具有0.552nm RMS粗糙度的GaAs(001)-(2x4)衬底上的Al(110)可获得最佳结果。尽管Si(111)-(``1x1'')上的外延导致单晶Al(111)层的RMS粗糙度仅为0.487nm,但详细的XRD研究表明,微晶可能未对准,从而可能导致缺陷。同样,在Si(111)-(7x7)衬底上进行外延可以产生RMS粗糙度为0.519nm的Al(111)层,但是在Nomarski显微镜下显得较粗糙,这可能是由于在Al沉积之前进行了表面处理。在Si(001)-(2x1)衬底上的沉积导致具有更高RMS粗糙度(0.719nm)的Al(110)双晶。最后,在GaAs(001)-(4x4)重建上的生长导致多晶材料RMS粗糙度为1.20nm的Al(100),Al(110)和Al(111)混合,此外,在GaAs(001)-(4x4)重建上生长的层的组成在多次生长中不一致。

著录项

  • 作者

    Tournet Julie;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号