Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.
展开▼
机译:日冕空间望远镜需要波前控制系统用于高对比度成像应用,例如系外行星直接成像。高致动器数MEMS可变形镜(DM)是这些波前控制系统的关键要素,但尚未在太空中飞行足够长的时间来表征其在轨性能。 MEMS变形镜立方卫星测试台是MEMS DM和波前传感技术的概念性纳米卫星演示。测试平台是3U CubeSat总线。在10 x 10 x 34.05厘米(3U)的可用空间中,为光学负载保留了10 x 10 x 15厘米的空间。有效载荷的主要目的是表征和校准MEMS变形镜在延长的时间段(数月)内的在轨性能。它的设计结合了Shack Hartmann波前传感器(内部激光照明)和焦平面传感器(与外部光圈配合使用以成像明亮的恒星)。尽管该设计灵活且可以应用于其他供应商的镜子,但我们为此任务设计了32驱动器的波士顿微机Mini变形镜。我们介绍任务设计和有效载荷架构,并讨论实验设计,需求和性能模拟。
展开▼