首页> 外文OA文献 >Study of directional ocean wavefield evolution and rogue wave occurrence using large-scale phase-resolved nonlinear simulations
【2h】

Study of directional ocean wavefield evolution and rogue wave occurrence using large-scale phase-resolved nonlinear simulations

机译:利用大规模相位分辨非线性模拟研究定向海洋波场演化和流氓波的发生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is challenging to obtain accurate predictions of ocean surface wavefield evolutions due to several complex dynamic processes involved, including nonlinear wave interaction, wave breaking and wind forcing, and also wave interactions with currents and bottom bathymetry. With fast computational algorithms for nonlinear phase-resolved wave simulations and modern computational capabilities, we now develop and apply a direct large-scale nonlinear phase-resolved wavefield simulation tool, which we call SNOW (Simulation of Nonlinear Ocean Wavefields), to study the evolution of directional ocean waves and occurrence of rogue waves (extremely large waves). Using SNOW, we obtain an ensemble of nonlinear deep-water wavefield simulations, initialized by JONSWAP spectrum with a broad range of spectral parameters, over large space-time scales. Spectral evolutions, nonlinear wave statistics and rogue wave occurrence are investigated based on the simulated wavefields. The SNOW results are compared to available wave basin experiments and predictions from linear theory and approximate nonlinear-Schr6dinger-equation (NLS) type models. SNOW predictions give an overall better comparison with wave-basin experiments than NLStype model predictions. For initially narrow-banded and narrow-directional-spreading wavefields, we find modulational instability develops over short time, resulting in considerable spectral broadening, strongly non-Gaussian statistics and probability of rogue wave occurrence an order of magnitude higher than linear theory prediction. For longer time, the wave spectrum in SNOW simulations reaches a non-Gaussian quasi-stationary state, and this is not predicted by NLS-type models, where a continuous spectral broadening is observed. When waves spread broadly in frequency and direction, the modulational-instability effect is reduced and the wave statistics and rogue wave probability are close to linear theory prediction. Number and area-based probabilities are introduced to measure the likelihood of rogue wave occurrence. To effectively predict rogue wave occurrence in directional seas, we propose a new modified Benjamin-Feir index (MBFI), which accounts for the effects of wave directionality. It is shown that the occurrence probabilities of rogue waves are well correlated with MBFI over a broad range of spectral parameters. Based on a large catalogue of rogue waves found from SNOW simulations, the geometric shapes of rogue waves are analyzed using proper orthogonal decomposition (POD). It is found that rogue wave profiles can generally be described by a small number of POD modes. SNOW simulations are also used to investigate the influence of finite depth on the evolution of nonlinear wavefields. As water depth decreases, the modulational instability decreases and finally diminishes. It is found that the occurrence probability of rogue waves and wave kurtosis decrease as water depth decreases. The wave statistics and rogue wave occurrence in bimodal wavefields are also studied. The influence of swell on the wave statistics of single-modal wind sea is not monotonic. The occurrence probability of rogue waves can either increase or decrease depending on the bimodal spectrum shape. We find the rogue wave probability and wave kurtosis are minimized when the propagation directions of swell and wind sea are orthogonal. By assimilating wave measurements from in-situ buoy and/or remote sensing into SNOW, we develop and demonstrate the capability of phase-resolved reconstruction and forecasting of wavefield evolution and rogue wave occurrence. Such capability could significantly enhance marine design and operation. This research paves the way for a new-generation wave forecasting model that is capable of providing heretofore unavailable large-scale phase-resolved information on the ocean wave evolution. Such capability is critically useful such as in the understanding of rogue wave dynamics and in the practical marine operations and safety.
机译:由于涉及多个复杂的动力学过程,包括非线性波浪相互作用,波浪破碎和强迫,以及波浪与洋流和海底测深的相互作用,因此要获得对海洋表面波场演变的准确预测具有挑战性。借助用于非线性相位分辨波仿真的快速计算算法和现代计算能力,我们现在开发并应用了直接的大规模非线性相位分辨波场仿真工具,我们将其称为SNOW(非线性海洋波场的模拟)来研究演化定向海浪和流浪(极大浪)的发生。使用SNOW,我们获得了非线性深水波场模拟的整体,该模拟由JONSWAP光谱在较大的时空尺度上以宽范围的光谱参数初始化。基于模拟的波场,研究了光谱演化,非线性波统计和流浪波的发生。将SNOW结果与可用的流域实验和线性理论和近似非线性Schr6dinger方程(NLS)类型模型的预测进行比较。与NLStype模型预测相比,SNOW预测与波盆实验的整体效果更好。对于最初的窄带和窄方向扩展波场,我们发现调制不稳定性会在短时间内发展,从而导致相当大的频谱展宽,强烈的非高斯统计和流氓波出现的可能性,比线性理论预测高出一个数量级。对于更长的时间,SNOW模拟中的波谱达到了非高斯准平稳状态,这在NLS型模型中无法预测,在该模型中观察到了连续的光谱展宽。当波在频率和方向上广泛传播时,调制不稳定效应减小,波统计和流浪概率接近线性理论预测值。引入了基于数量和面积的概率来测量流氓波发生的可能性。为了有效地预测定向海中流浪的发生,我们提出了一种新的修正的本杰明·费尔指数(MBFI),该指数考虑了波向性的影响。结果表明,在广泛的光谱参数范围内,流氓波的发生​​概率与MBFI密切相关。基于从SNOW模拟中找到的大量恶意波,基于适当的正交分解(POD)分析了恶意波的几何形状。已经发现,流氓波概况通常可以通过少量的POD模式来描述。 SNOW模拟还用于研究有限深度对非线性波场演化的影响。随着水深的减小,调制的不稳定性减小,并最终减小。研究发现,随着水深的减小,流浪和波浪峰度的发生概率降低。还研究了双峰波场中的波统计和流浪波的发生。涨潮对单模态风浪统计的影响不是单调的。流氓波的发生​​概率可以根据双峰频谱形状而增加或减少。我们发现,当海浪和风浪的传播方向正交时,流浪概率和波峰度最小。通过将来自原位浮标和/或遥感的波测量值吸收到SNOW中,我们开发并演示了相分辨重建和预测波场演化和流浪发生的能力。这种能力可以大大增强船舶的设计和运行。这项研究为新一代波浪预报模型铺平了道路,该模型能够提供迄今为止无法获得的有关海浪演化的大规模相位分辨信息。这种功能至关重要,例如在了解流浪动力学以及实际的海上操作和安全方面。

著录项

  • 作者

    Xiao Wenting 1982-;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号