首页> 外文OA文献 >Performance analysis of subaperture processing using a large aperture planar towed array
【2h】

Performance analysis of subaperture processing using a large aperture planar towed array

机译:大孔径平面拖曳阵列子孔径处理性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years the focus of passive detection and localization of submarines has moved from the deep ocean into the littoral regions. the problem of passive detection in these regions is complicated by strong multipath propagation with high transmission loss. Large aperture planar arrays have the potential to improve detection performance due to their high resolution and high gain, but are suceptible to two main performance degradation mechanisms: limited spatial coherence of signals and nonstationarity of high bearing rate interference sources common in littoral regions of strategic importance. This thesis presents subarray processing as a method of improving passive detection performance using such large arrays. This thesis develops statistical models for the detection of performance of three adaptive, sample-covariance-based subarray processing algorithms which incorporate the effects of limited spatial coherence as well as finite snapshot support. The performance of the optimum processor conditioned on known data coveriances is derived as well for comparison. These models are then used to compare subarray algorithms and partitioning schemes in a variety of interference environments using plane wave and matched-field propagation models.
机译:近年来,被动探测和潜艇定位的重点已经从深海转移到沿海地区。这些区域中的被动检测问题由于强大的多径传播和高传输损耗而变得复杂。大孔径平面阵列由于其高分辨率和高增益而具有改善检测性能的潜力,但容易受到两种主要性能下降机制的影响:有限的信号空间相干性和沿海地区具有战略重要性的高承载率干扰源的不稳定。本文提出了子阵列处理方法,作为使用这种大阵列提高无源检测性能的一种方法。本文开发了统计模型,用于检测三种基于样本协方差的自适应子阵列处理算法的性能,这些算法结合了有限空间相干性和有限快照支持的效果。还导出了以已知数据覆盖率为条件的最佳处理器的性能,以进行比较。然后,使用平面波和匹配场传播模型,将这些模型用于比较各种干扰环境中的子阵列算法和分区方案。

著录项

  • 作者

    Watson Jennifer Anne 1973-;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号