首页> 外文OA文献 >Nonvolatile memory devices with colloidal, 1.0 nm silicon nanoparticles : principles of operation, fabrication, measurements, and analysis
【2h】

Nonvolatile memory devices with colloidal, 1.0 nm silicon nanoparticles : principles of operation, fabrication, measurements, and analysis

机译:具有胶体1.0nm硅纳米颗粒的非易失性存储器件:操作,制造,测量和分析的原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon nanoparticles are candidate charge trapping and storage elements for future high density, low-voltage nonvolatile memory devices. Most previous works have studied nanoparticles of larger than 5 nm size and exhibited bulk-like trapping characteristics. Technologically viable and competitive future devices, however, will require nanoparticles of sub 3-nm dimensions; a zero-dimensional regime where significant changes to silicon electronic structure occur. In this thesis, the physical processes involved in charge based nonvolatile memory device operation with colloidal mono-disperse 1.0 nm silicon nanoparticles embedded in a metal-oxide-semiconductor (MOS) gate stack is studied for the first time. Spin-coating was used to uniformly deliver the nanoparticle colloid across 150 mm wafers with density control over a thin tunneling oxide. Material characterization via spectroscopic ellipsometry, atomic force microscopy and transmission electron microscopy showed that across wafer sub-monolayer coverage with low-levels of agglomeration was achieved with nanoparticles so positioned possibly due to solvent-mediated self-assembly effects, and that the intrinsic nanoparticle crystallinity was intact after complete device processing. MOS capacitors with Si nanoparticles embedded in their dielectric exhibit strong endurance and well-behaved impedance (capacitance-voltage) characteristics with persistent hysteresis and only 53 mV standard deviation across wafer. Measurements showed that successive dilution of the nanoparticle colloid correlated directly with a decreased measured hysteresis and similarly fabricated zero-nanoparticle control devices exhibited a negligible hysteresis. Systems with 1.0 nm nanoparticles exhibited pure hole storage.
机译:硅纳米颗粒是未来高密度,低压非易失性存储设备的候选电荷捕获和存储元件。先前的大多数工作都研究了大于5 nm的纳米颗粒,并表现出类似块状的捕获特性。然而,在技术上可行且具有竞争力的未来设备将需要小于3纳米尺寸的纳米颗粒。一种零维状态,其中硅电子结构发生了重大变化。本文首次研究了将胶体单分散1.0 nm硅纳米粒子嵌入金属氧化物半导体(MOS)栅叠层中的基于电荷的非易失性存储器件操作中涉及的物理过程。使用旋涂法将纳米颗粒胶体均匀地输送到150毫米晶片上,并控制薄隧道氧化物的密度。通过椭圆偏振光谱仪,原子力显微镜和透射电子显微镜对材料进行表征,结果表明,由于溶剂介导的自组装效应而定位的纳米颗粒可以实现低水平团聚的整个晶片亚单层覆盖,并且固有的纳米颗粒结晶度在完成设备处理后保持完好无损。嵌入了硅纳米粒子的介电层中的MOS电容器具有很强的耐久性和良好的阻抗(电容-电压)特性,具有持久的滞后性,整个晶圆的标准偏差仅为53 mV。测量表明,纳米粒子胶体的连续稀释与降低的测得的磁滞直接相关,并且类似地制造的零纳米粒子控制装置表现出可忽略的磁滞。具有1.0 nm纳米粒子的系统表现出纯空穴存储。

著录项

  • 作者

    Nayfeh Osama Munir 1980-;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号