首页> 外文OA文献 >Automatic correction of grammatical errors in non-native English text
【2h】

Automatic correction of grammatical errors in non-native English text

机译:自动纠正非母语英语文本中的语法错误

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Learning a foreign language requires much practice outside of the classroom. Computer-assisted language learning systems can help fill this need, and one desirable capability of such systems is the automatic correction of grammatical errors in texts written by non-native speakers. This dissertation concerns the correction of non-native grammatical errors in English text, and the closely related task of generating test items for language learning, using a combination of statistical and linguistic methods. We show that syntactic analysis enables extraction of more salient features. We address issues concerning robustness in feature extraction from non-native texts; and also design a framework for simultaneous correction of multiple error types. Our proposed methods are applied on some of the most common usage errors, including prepositions, verb forms, and articles. The methods are evaluated on sentences with synthetic and real errors, and in both restricted and open domains. A secondary theme of this dissertation is that of user customization. We perform a detailed analysis on a non-native corpus, illustrating the utility of an error model based on the mother tongue. We study the benefits of adjusting the correction models based on the quality of the input text; and also present novel methods to generate high-quality multiple-choice items that are tailored to the interests of the user.
机译:学习外语需要在课堂外进行很多练习。计算机辅助语言学习系统可以帮助满足这一需求,这种系统的一项理想功能是自动纠正由非母语人士撰写的文本中的语法错误。本论文涉及英语文本中非母语语法错误的纠正,以及与统计和语言方法相结合的生成用于语言学习的测试项目的紧密相关的任务。我们证明了句法分析可以提取更多显着特征。我们解决了从非本地文本中提取特征时的鲁棒性问题;并且还设计了同时纠正多种错误类型的框架。我们提出的方法适用于一些最常见的用法错误,包括介词,动词形式和冠词。在具有综合和实际错误的句子中,以及在受限和开放域中,对方法进行评估。本文的第二个主题是用户定制。我们对非本地语料库进行了详细的分析,说明了基于母语的错误模型的实用性。我们研究了根据输入文本的质量调整校正模型的好处;并且还提出了新颖的方法来生成适合用户兴趣的高质量多项选择项。

著录项

  • 作者

    Lee John Sie Yuen 1977-;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号