The space of camera settings is large and individual settings can vary dramatically from scene to scene. This thesis explores methods for capturing and manipulating multiple camera settings in a single exposure. Multiplexing multiple camera settings in a single exposure can allow post-exposure control and improve the quality of photographs taken in challenging lighting environments (e.g. low light or high motion). We first describe the design and implementation of a prototype optical system and associated algorithms to capture four images of a scene in a single exposure, each taken with a different aperture setting. Our system can be used with commercially available DSLR cameras and photographic lenses without modification to either. We demonstrate several applications of our multi-aperture camera, such as post-exposure depth of field control, synthetic refocusing, and depth-guided deconvolution. Next we describe multiplexed flash illumination to recover both flash and ambient light information as well as extract depth information in a single exposure. Traditional photographic flashes illuminate the scene with a spatially-constant light beam. By adding a mask and optics to a flash, we can project a spatially varying illumination onto the scene which allows us to spatially multiplex the flash and ambient illuminations onto the imager. We apply flash multiplexing to enable single exposure flash/no-flash image fusion, in particular, performing flash/no-flash relighting on dynamic scenes with moving objects. Finally, we propose spatio-temporal multiplexing, a novel image sensor feature that enables simultaneous capture of flash and ambient illumination.
展开▼