首页> 外文OA文献 >Design of a viable homogeneous-charge compression-ignition (HCCI) engine : a computational study with detailed chemical kinetics
【2h】

Design of a viable homogeneous-charge compression-ignition (HCCI) engine : a computational study with detailed chemical kinetics

机译:设计可行的均质充量压缩点火(HCCI)发动机:具有详细化学动力学的计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The homogeneous-charge compression-ignition (HCCI) engine is a novel engine technology with the potential to substantially lower emissions from automotive sources. HCCI engines use lean-premixed combustion to achieve good fuel economy and low emissions of nitrogen-oxides and particulate matter. However, experimentally these engines have demonstrated a viable operating range that is too narrow for vehicular applications. Incomplete combustion or misfire can occur under fuel-lean conditions imposing a minimum load at which the engine can operate. At high loads, HCCI engines are often extremely loud and measured cylinder pressures show strong acoustic oscillations resembling those for a knocking sparkignited engine. The goal of this research was to understand the factors limiting the HCCI range of operability and propose ways of broadening that range. An engine simulation tool was developed to model the combustion process in the engine and predict HCCI knock and incomplete combustion. Predicting HCCI engine knock is particularly important because knock limits the maximum engine torque, and this limitation is a major obstacle to commercialization. A fundamentally-based criterion was developed and shown to give good predictions of the experimental knock limit. Our engine simulation tool was then used to explore the effect of various engine design parameters and operating conditions on the HCCI viable operating range. Performance maps, which show the response of the engine during a normal driving cycle, were constructed to compare these engine designs. The simulations showed that an acceptably broad operating range can be achieved by using a low compression ratio, low octane fuel, and moderate boost pressure. An explanation of why this choice of parameters gives a broad operating window is discussed. Our prediction of the HCCI knock limit is based on the autoignition theory of knock, which asserts that local overpressures in the engine are caused by extremely rapid chemical energy release. A competing theory asserts that knock is caused by the formation of detonation waves initiated at autoignition centers ('hot-spots') in the engine. No conclusive experimental evidence exists for the detonation theory, but many numerical simulations in the literature show that detonation formation is possible; however, some of the assumptions made in these simulations warrant re-examination. In particular, the effect of curvature on small (quasispherical) hot-spots has often been overlooked. We first examined the well-studied case of gasoline spark-ignited engine knock and observed that the size of the hot-spot needed to initiate a detonation is larger than the end-gas region where knock occurs. Subsequent studies of HCCI engine knock predicted that detonations would not form regardless of the hot-spot size because of the low energy content of fuel-lean mixtures typically used in these engines. Our predictions of the HCCI viable operating range were shown to be quite sensitive to details of the ignition chemistry. Therefore, an attempt was made to build an improved chemistry model for HCCI combustion using automatic mechanism-generation software developed in our research group. Extensions to the software were made to allow chemistry model construction for engine conditions. Model predictions for n-heptane/air combustion were compared to literature data from a jet-stirred reactor and rapid-compression machine. We conclude that automatic mechanism generation gives fair predictions without the tuning of rate parameters or other efforts to improve agreement. However, some tuning of the automatically-generated chemistry models is necessary to give the accurate predictions of HCCI combustion needed for our design calculations.
机译:均质压燃式(HCCI)发动机是一种新颖的发动机技术,具有显着降低汽车排放源的潜力。 HCCI发动机使用稀薄预混燃烧来实现良好的燃油经济性,并减少氮氧化物和颗粒物的排放。然而,从实验上看,这些发动机已经证明了可行的工作范围,该范围对于车辆应用而言太窄了。在燃油稀少的情况下,可能会导致不完全燃烧或不点火,这将使发动机能够以最低负荷运转。在高负载下,HCCI发动机通常声音非常大,并且测得的气缸压力显示出强烈的声振动,类似于敲打火花点火发动机的声振动。这项研究的目的是了解限制HCCI可操作性范围的因素,并提出扩大该范围的方法。开发了一种发动机仿真工具,以对发动机中的燃烧过程进行建模,并预测HCCI爆震和不完全燃烧。预测HCCI发动机爆震尤为重要,因为爆震会限制最大发动机扭矩,而这种限制是商业化的主要障碍。制定了基于根本的标准,并显示出可以很好地预测实验爆震极限。然后,我们的发动机仿真工具被用于探索各种发动机设计参数和运行条件对HCCI可行运行范围的影响。可以绘制性能图,以显示发动机在正常行驶周期内的响应,以比较这些发动机设计。仿真表明,通过使用低压缩比,低辛烷值燃料和适度的增压压力,可以实现可接受的宽工作范围。讨论了为什么选择此参数会给出宽泛的操作窗口的解释。我们对HCCI爆震极限的预测基于爆震的自燃理论,该理论认为,发动机中的局部超压是由化学能的快速释放引起的。一种相互竞争的理论认为,爆震是由发动机自燃中心(“热点”)引发的爆炸波的形成引起的。没有关于爆轰理论的确凿实验证据,但是文献中的许多数值模拟表明,可能形成爆轰。但是,在这些模拟中所做的某些假设需要重新检查。特别是,曲率对小(准球形)热点的影响经常被忽略。我们首先研究了经过充分研究的汽油火花点火发动机爆震的情况,并观察到引发爆震所需的热点区域的大小大于发生爆震的最终气体区域。 HCCI发动机爆震的后续研究预测,无论热点大小,都不会形成爆炸,因为这些发动机中通常使用的贫燃料混合物的能量含量低。我们对HCCI可行工作范围的预测显示出对点火化学细节非常敏感。因此,我们尝试使用我们的研究小组开发的自动机制生成软件为HCCI燃烧建立改进的化学模型。对该软件进行了扩展,以允许针对发动机工况构建化学模型。将正庚烷/空气燃烧的模型预测与来自喷射搅拌反应器和快速压缩机的文献数据进行了比较。我们得出的结论是,自动机制生成可以提供合理的预测,而无需调整速率参数或进行其他改进协议的工作。但是,必须对自动生成的化学模型进行一些调整,才能准确预测设计计算所需的HCCI燃烧。

著录项

  • 作者

    Yelvington Paul E. 1977-;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号