首页> 外文OA文献 >On a Method of Solution for the Coupled Hill Type Equations and Its Application to the Study of the Stability of Nonlinear Vibrations
【2h】

On a Method of Solution for the Coupled Hill Type Equations and Its Application to the Study of the Stability of Nonlinear Vibrations

机译:耦合Hill型方程的一种求解方法及其在非线性振动稳定性研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a method of the stability analysis for large amplitude steady state response of a nonlinear beam and flat plate under periodic excitation. The nonlinearity is attributed to the membrane tension which is developed when the beam and plate deflections are not small in comparison to their thickness. This problem is analyzed by the application of a Galerkin method, in which the effect of multi-mode participation is considered, and an unspecified function of the time resulting in nonlinear coupled ordinary differential equations of motion is solved by the harrnonic balance method and the Newton Raphson method. The stability question is investigated by studyingthe behavior of a small perturbation of the steady state response. The perturbation equations of the present method of solution reduce to the coupled Hill type equation. Assuming the solution of the form as a product of characteristic component and a Fourier series which represents the periodicity of motion and application of the harmonic balance method can transform the stability problem into the eigenvalue problem of a nonsymmetric matrix. After a proper transformation, the eigenvalues can be calculated on a digital computer by the QR double step method. The effectiveness and the accuracy of the proposed method are examined for a Mathieu equation whose stability has been worked out in detail and the application to stability analysis of the nonlinear vibrations of beams are presented.
机译:本文提出了一种周期性分析下非线性梁和平板大振幅稳态响应的稳定性分析方法。非线性归因于膜张力,当梁和板的挠度与其厚度相比较小时,就会产生膜张力。通过应用Galerkin方法分析此问题,其中考虑了多模式参与的影响,并且通过Harrnonic平衡方法和Newton解决了导致运动非线性耦合的微分方程的时间的不确定函数。拉夫森法。通过研究稳态响应的小扰动行为来研究稳定性问题。本解决方案的摄动方程简化为耦合的希尔型方程。假设形式的解是特征分量和代表运动周期的傅立叶级数的乘积,并且谐波平衡方法的应用可以将稳定性问题转化为非对称矩阵的特征值问题。经过适当的转换后,可以通过QR双步法在数字计算机上计算特征值。检验了所提方法的有效性和准确性,该方法适用于详细计算了稳定性的Mathieu方程,并提出了其在梁非线性振动稳定性分析中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号