首页> 外文OA文献 >Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs
【2h】

Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs

机译:用GUB分离和扩展二阶圆锥背包约束的覆盖不等式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the second-order conic equivalent of the classic knapsack polytope where the variables are subject to generalized upper bound constraints. We describe and compare a number of separation and extension algorithms which make use of the extra structure implied by the generalized upper bound constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. We show that determining whether a cover can be extended with a variable is NP-hard. Computational experiments are performed comparing the proposed separation and extension algorithms. These experiments show that applying these extended cover cuts can greatly improve solution time of second-order cone programs.
机译:我们考虑经典背包多面体的二阶圆锥等效,其中变量受到广义上界约束。我们描述和比较了许多分离和扩展算法,这些算法利用广义上限约束所隐含的额外结构,以增强经典封面的二阶圆锥等效性。我们表明确定是否可以使用变量扩展封面是NP-hard。比较所提出的分离和扩展算法进行了计算实验。这些实验表明,应用这些扩展的覆盖切口可以大大缩短二阶圆锥程序的求解时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号